Cho hình chóp đều S.ABC có \(AB = a,\widehat {ASB} = {30^0}.\) Lấy các điểm B', C' lần lượt thuộc các cạnh SB, SC sao cho chu vi tam giác AB'C' nhỏ nhất. Tính chu vi đó.
A. \(\left( {\sqrt 3 - 1} \right)a.\)
B. \(\sqrt 3 a.\)
C. \(\frac{a}{{1 + \sqrt 3 }}.\)
D. \(\left( {1 + \sqrt 3 } \right)a.\)
Lời giải của giáo viên
ToanVN.com
.png)
Trải tứ chóp S.ABC ra mặt phẳng (SBC) thì chu vi tam giác AB'C' bằng
\(AB' + B'C' + C'A = AB' + B'C' + C'D \ge AD.\)
Dấu “=” xảy ra khi \(B' \equiv E,C' \equiv F.\)
Ta có \(AB = a,\widehat {ASB} = {30^0} \Rightarrow SA = SB = \frac{a}{{2\sin {{15}^0}}} = \frac{{a\left( {\sqrt 6 + \sqrt 2 } \right)}}{2}.\)
Lại có \(\widehat {ASB} = {30^0} \Rightarrow \widehat {ASD} = {90^0} \Rightarrow AD = SA\sqrt 2 = \left( {1 + \sqrt 3 } \right)a.\)
Vậy chu vi tam giác AB'C' đạt giá trị nhỏ nhất bằng \(\left( {1 + \sqrt 3 } \right)a.\)
CÂU HỎI CÙNG CHỦ ĐỀ
Cho hình lập phương ABCD.A'B'C'D' có tất cả các cạnh bằng 1. Gọi M là trung điểm của BB'.Tính thể tích khối A'MCD
.png)
Trong các hàm số sau hàm số nào nghịch biến trên R?
Tìm tất cả các giá trị của m để hàm số \(y = \frac{{mx + 16}}{{x + m}}\) đồng biến trên \(\left( {0; + \infty } \right)\) ?
Cho hàm số \(y=f(x)\) có bảng biến thiên như hình bên dưới. Hàm số đã cho đồng biến trên khoảng nào dưới đây?
Cho hàm số \(y=f(x)\) có đúng ba điểm cực trị là 0; 1; 2 và có đạo hàm liên tục trên R. Khi đó hàm số \(y = f\left( {4x - 4{x^2}} \right)\) có bao nhiêu điểm cực trị?
Cho hình chóp đều S.ABC có đáy là tam giác đều cạnh a. Gọi E, F lần lượt là trung điểm các cạnh SB, SC. Biết mặt phẳng (AEF) vuông góc với mặt phẳng (SBC).
.png)
Thể tích của khối chóp S.ABC.
Gọi d là tiếp tuyến tại điểm cực đại của đồ thị hàm số \(y = {x^4} - 3{x^2} + 2.\) Mệnh đề nào dưới đây đúng?
Cho M là trung điểm của đoạn AB. Khẳng định nào sau đây đúng?
Cho m, n là các số nguyên dương khác 1. Gọi P là tích các nghiệm của phương trình \(2018\left( {{{\log }_m}x} \right)\left( {{{\log }_n}x} \right) = 2017{\log _m}x + 2018{\log _n}x + 2019.\) P nguyên và đạt giá trị nhỏ nhất khi:
Tìm số điểm cực trị của đồ thị hàm số \(y = \frac{{x - 2}}{{x + 1}}\) ?
Gọi S là tập nghiệm của phương trình \({\log _{\sqrt 2 }}{\left( {x - 1} \right)^3} - {\log _2}{\left( {x - 3} \right)^2} = 2{\log _2}\left( {x - 1} \right)\) trên R. Tìm số phần tử của S.
Một nhóm học sinh gồm 5 bạn nam, và 3 bạn nữ cùng đi xem phim, có bao nhiêu cách xếp 8 bạn vào 8 ghế hàng ngang sao cho 3 bạn nữ ngồi cạnh nhau?
Tìm m để hàm số \(y = \left\{ \begin{array}{l}
\frac{{2\sqrt[3]{x} - x - 1}}{{x - 1}}{\rm{ khi x}} \ne {\rm{1}}\\
{\rm{mx + 1 khi x = 1}}
\end{array} \right.\) liên tục trên R
Gọi S là tập tất cả các giá trị nguyên của tham số thực m sao cho giá trị lớn nhất của hàm số \(y = \left| {\frac{1}{4}{x^4} - 14{x^2} + 48x + m - 30} \right|\) trên đoạn [0;2] không vượt quá 30. Tính tổng tất cả các phần tử của S.
Với \(a = {\log _2}7,b = {\log _5}7.\) Tính giá trị của \({\log _{10}}7.\)


