Chọn khẳng định sai trong các khẳng định sau
A. \({\log _{\frac{1}{3}}}a > {\log _{\frac{1}{3}}}b \Leftrightarrow a > b > 0\)
B. \({\log _3}x < 0 \Leftrightarrow 0 < x < 1\)
C. \({\log _{\frac{1}{2}}}a = {\log _{\frac{1}{2}}}b \Leftrightarrow a = b > 0\)
D. \(\ln x > 0 \Leftrightarrow x > 1\)
Lời giải của giáo viên
ToanVN.com
Hàm số logarit nghịch biến khi 0 < a < 1 nên “ \({\log _{\frac{1}{3}}}a > {\log _{\frac{1}{3}}}b \Leftrightarrow a > b > 0\)” là khẳng định sai.
CÂU HỎI CÙNG CHỦ ĐỀ
Trong không gian Oxyz, cho 2 mặt phẳng \(\left( P \right):2x-y+z+2=0\) và \(\left( Q \right):x+y+2z-1=0\). Tính góc giữa hai mặt phẳng \(\left( P \right)\) và \(\left( Q \right)\).
Cho \(A=\int\limits_{1}^{2}{\left[ 3f\left( x \right)+2g\left( x \right) \right]}\,dx=1\) và \(B=\int\limits_{1}^{2}{\left[ 2f\left( x \right)-g\left( x \right) \right]}\,dx=3\). Khi đó \(\int\limits_{1}^{2}{f\left( x \right)}\,dx\) có giá trị là
Cho số phức \(z = \frac{{1 + i}}{{1 - i}}\) thì z2019 có giá trị là
Tìm m để phương trình \({4^x} - 2\left( {m - 1} \right){.2^x} + 3m - 4 = 0\) có hai nghiệm phân biệt \({x_1},\,\,{x_2}\) sao cho \({x_1} + {x_2} > 2\).
Tìm số phức liên hợp của số phức \(z = \left( {2 + i} \right)\left( { - 1 + i} \right){\left( {1 + 2i} \right)^2}\)
Cho khối chóp S.ABC có đáy là tam giác đều cạnh a, cạnh bên SA vuông góc với đáy, góc giữa \(\left( SBC \right)\) và mặt phẳng đáy bằng \(60{}^\circ \). Tính thể tích V của khối chóp S.ABC.
Cho khối chóp S.ABCD có đáy là hình chữ nhật, AB=a, \(AD=a\sqrt{3}\), cạnh bên SA vuông góc với đáy, góc giữa SB và mặt phẳng đáy bằng \(60{}^\circ \). Tính thể tích V của khối chóp S.ABCD.
Tìm tiệm cận đứng của đồ thị hàm số \(y=\frac{3-4x}{x+1}\).
Trong không gianOxyz, tìm m để góc giữa hai véc-tơ \(\overrightarrow{u}=\left( 1;{{\log }_{3}}5;{{\log }_{m}}2 \right)\) và \(\overrightarrow{v}=\left( 3;{{\log }_{5}}3;4 \right)\) là góc nhọn.
Tìm giá trị lớn nhất của hàm số \(y = \sqrt {5 - 4\sin x} \).
Tìm giá trị lớn nhất của tham số m để hàm số \(y = \frac{1}{3}{x^3} - m{x^2} + \left( {4m - 3} \right)x + 2018\) đồng biến trên R.
Trong không gian Oxyz, cho tứ diện ABCD với \(A\left( {1;6;2} \right),B\left( {5;1;3} \right),C\left( {4;0;6} \right),D\left( {5;0;4} \right)\). Viết phương trình mặt cầu (S) có tâm D và tiếp xúc với mặt phẳng (ABC).
Tính \(\mathop {\lim }\limits_{x \to + \infty } \frac{{2x + 1}}{{x - 1}}\)
Một hình nón \(\left( N \right)\) có thiết diện qua trục là tam giác đều có cạnh bằng 2. Thể tích V của khối nón giới hạn bởi \(\left( N \right)\) bằng


