Lời giải của giáo viên
ToanVN.com
Mặt phẳng \(\left( P \right)\) và \(\left( Q \right)\) lần lượt có véc-tơ pháp tuyến là \(\overrightarrow{{{n}_{1}}}=\left( 2;-1;1 \right)\) và \(\overrightarrow{{{n}_{2}}}=\left( 1;1;2 \right)\).
Ta có \(\cos \left( \left( P \right),\left( Q \right) \right)=\frac{\left| \overrightarrow{{{n}_{1}}}.\overrightarrow{{{n}_{2}}} \right|}{\left| \overrightarrow{{{n}_{1}}} \right|.\left| \overrightarrow{{{n}_{2}}} \right|}=\frac{1}{2}\) .
Vậy góc giữa hai mặt phẳng \(\left( P \right)\) và \(\left( Q \right)\) là \(60{}^\circ \).
CÂU HỎI CÙNG CHỦ ĐỀ
Cho \(A=\int\limits_{1}^{2}{\left[ 3f\left( x \right)+2g\left( x \right) \right]}\,dx=1\) và \(B=\int\limits_{1}^{2}{\left[ 2f\left( x \right)-g\left( x \right) \right]}\,dx=3\). Khi đó \(\int\limits_{1}^{2}{f\left( x \right)}\,dx\) có giá trị là
Cho số phức \(z = \frac{{1 + i}}{{1 - i}}\) thì z2019 có giá trị là
Tìm số phức liên hợp của số phức \(z = \left( {2 + i} \right)\left( { - 1 + i} \right){\left( {1 + 2i} \right)^2}\)
Tìm m để phương trình \({4^x} - 2\left( {m - 1} \right){.2^x} + 3m - 4 = 0\) có hai nghiệm phân biệt \({x_1},\,\,{x_2}\) sao cho \({x_1} + {x_2} > 2\).
Cho khối chóp S.ABC có đáy là tam giác đều cạnh a, cạnh bên SA vuông góc với đáy, góc giữa \(\left( SBC \right)\) và mặt phẳng đáy bằng \(60{}^\circ \). Tính thể tích V của khối chóp S.ABC.
Cho khối chóp S.ABCD có đáy là hình chữ nhật, AB=a, \(AD=a\sqrt{3}\), cạnh bên SA vuông góc với đáy, góc giữa SB và mặt phẳng đáy bằng \(60{}^\circ \). Tính thể tích V của khối chóp S.ABCD.
Tìm tiệm cận đứng của đồ thị hàm số \(y=\frac{3-4x}{x+1}\).
Tìm giá trị lớn nhất của tham số m để hàm số \(y = \frac{1}{3}{x^3} - m{x^2} + \left( {4m - 3} \right)x + 2018\) đồng biến trên R.
Trong không gianOxyz, tìm m để góc giữa hai véc-tơ \(\overrightarrow{u}=\left( 1;{{\log }_{3}}5;{{\log }_{m}}2 \right)\) và \(\overrightarrow{v}=\left( 3;{{\log }_{5}}3;4 \right)\) là góc nhọn.
Tính \(\mathop {\lim }\limits_{x \to + \infty } \frac{{2x + 1}}{{x - 1}}\)
Tìm giá trị lớn nhất của hàm số \(y = \sqrt {5 - 4\sin x} \).
Một hình nón \(\left( N \right)\) có thiết diện qua trục là tam giác đều có cạnh bằng 2. Thể tích V của khối nón giới hạn bởi \(\left( N \right)\) bằng
Trong không gian Oxyz, cho tứ diện ABCD với \(A\left( {1;6;2} \right),B\left( {5;1;3} \right),C\left( {4;0;6} \right),D\left( {5;0;4} \right)\). Viết phương trình mặt cầu (S) có tâm D và tiếp xúc với mặt phẳng (ABC).
Tính giá trị cực tiểu của hàm số \(y = {x^3} - 3{x^2} + 1\)


