Trong không gianOxyz, tìm m để góc giữa hai véc-tơ \(\overrightarrow{u}=\left( 1;{{\log }_{3}}5;{{\log }_{m}}2 \right)\) và \(\overrightarrow{v}=\left( 3;{{\log }_{5}}3;4 \right)\) là góc nhọn.
A.
\(\left\{ \begin{array}{l}
m > \frac{1}{2}\\
m \ne 1
\end{array} \right.\)
B.
\(\left[ \begin{array}{l}
m > 1\\
0 < m < \frac{1}{2}
\end{array} \right.\)
C. \(0 < m < \frac{1}{2}\)
D. m > 1
Lời giải của giáo viên
ToanVN.com
Góc giữa hai véc-tơ là góc nhọn khi và chỉ khi
\(\cos \left( {\overrightarrow u ,\overrightarrow v } \right) > 0 \Leftrightarrow 4 + 4{\log _m}2 > 0 \Leftrightarrow {\log _m}2 > - 1 \Leftrightarrow \left[ \begin{array}{l} \left\{ \begin{array}{l} 0 < m < 1\\ m < \frac{1}{2} \end{array} \right.\\ \left\{ \begin{array}{l} m > 1\\ m > \frac{1}{2} \end{array} \right. \end{array} \right. \Leftrightarrow \left[ \begin{array}{l} 0 < m < \frac{1}{2}\\ m > 1 \end{array} \right.\)
CÂU HỎI CÙNG CHỦ ĐỀ
Trong không gian Oxyz, cho 2 mặt phẳng \(\left( P \right):2x-y+z+2=0\) và \(\left( Q \right):x+y+2z-1=0\). Tính góc giữa hai mặt phẳng \(\left( P \right)\) và \(\left( Q \right)\).
Cho \(A=\int\limits_{1}^{2}{\left[ 3f\left( x \right)+2g\left( x \right) \right]}\,dx=1\) và \(B=\int\limits_{1}^{2}{\left[ 2f\left( x \right)-g\left( x \right) \right]}\,dx=3\). Khi đó \(\int\limits_{1}^{2}{f\left( x \right)}\,dx\) có giá trị là
Cho số phức \(z = \frac{{1 + i}}{{1 - i}}\) thì z2019 có giá trị là
Tìm m để phương trình \({4^x} - 2\left( {m - 1} \right){.2^x} + 3m - 4 = 0\) có hai nghiệm phân biệt \({x_1},\,\,{x_2}\) sao cho \({x_1} + {x_2} > 2\).
Tìm số phức liên hợp của số phức \(z = \left( {2 + i} \right)\left( { - 1 + i} \right){\left( {1 + 2i} \right)^2}\)
Cho khối chóp S.ABC có đáy là tam giác đều cạnh a, cạnh bên SA vuông góc với đáy, góc giữa \(\left( SBC \right)\) và mặt phẳng đáy bằng \(60{}^\circ \). Tính thể tích V của khối chóp S.ABC.
Cho khối chóp S.ABCD có đáy là hình chữ nhật, AB=a, \(AD=a\sqrt{3}\), cạnh bên SA vuông góc với đáy, góc giữa SB và mặt phẳng đáy bằng \(60{}^\circ \). Tính thể tích V của khối chóp S.ABCD.
Tìm tiệm cận đứng của đồ thị hàm số \(y=\frac{3-4x}{x+1}\).
Tìm giá trị lớn nhất của tham số m để hàm số \(y = \frac{1}{3}{x^3} - m{x^2} + \left( {4m - 3} \right)x + 2018\) đồng biến trên R.
Tính \(\mathop {\lim }\limits_{x \to + \infty } \frac{{2x + 1}}{{x - 1}}\)
Tìm giá trị lớn nhất của hàm số \(y = \sqrt {5 - 4\sin x} \).
Một hình nón \(\left( N \right)\) có thiết diện qua trục là tam giác đều có cạnh bằng 2. Thể tích V của khối nón giới hạn bởi \(\left( N \right)\) bằng
Trong không gian Oxyz, cho tứ diện ABCD với \(A\left( {1;6;2} \right),B\left( {5;1;3} \right),C\left( {4;0;6} \right),D\left( {5;0;4} \right)\). Viết phương trình mặt cầu (S) có tâm D và tiếp xúc với mặt phẳng (ABC).
Tính giá trị cực tiểu của hàm số \(y = {x^3} - 3{x^2} + 1\)
Trong không gian Oxyz, cho 2 mặt phẳng \(\left( P \right):nx+7y-6z+4=0\) và \(\left( Q \right):3x-my-2z-7=0\) song song với nhau. Tính giá trị của \(m,\,n\).


