Lời giải của giáo viên
ToanVN.com
Điều kiện xác định: \(\left\{ \begin{array}{l}x > 0\\x + 1 > 0\end{array} \right.\,\, \Leftrightarrow x > 0\). Ta có phương trình tương đương
\({\mathop{\rm lnx}\nolimits} \left( {x + 1} \right) = 0\)
\(\Leftrightarrow x\left( {x + 1} \right) = 1\)
\(\Leftrightarrow \left[ \begin{array}{l}x = \dfrac{{ - 1 + \sqrt 5 }}{2}\\x = \dfrac{{ - 1 - \sqrt 5 }}{2}\end{array} \right.\) .
Trong đó: \(x = \dfrac{{ - 1 + \sqrt 5 }}{2} \in (0;1)\).
Chọn đáp án D.
CÂU HỎI CÙNG CHỦ ĐỀ
Điều kiện xác định của phương trình \({\log _x}(2{x^2} - 7x + 5) = 2\) là:
Tính nguyên hàm \(\int {\dfrac{{2{x^2} - 7x + 7}}{{x - 2}}\,dx} \) ta được:
Cho hình nón tròn xoay đỉnh \(S,\)đáy là đường tròn tâm \(O,\) bán kính đáy \(r = 5\). Một thiết diện qua đỉnh là tam giác \(SAB\) đều có cạnh bằng 8. Khoảng cách từ \(O\) đến mặt phẳng \(\left( {SAB} \right)\) bằng
Tính nguyên hàm \(\int {{{\left( {{e^3}} \right)}^{\cos x}}\sin x\,dx} \) ta được:
Cho x và y là hai số phức. Trong các phương án sau, hãy lựa chọn phương án sai .
Tìm hàm số F(x) biết rằng \(F'(x) = \dfrac{1}{{{{\sin }^2}x}}\) và đồ thị của hàm số F(x) đi qua điểm \(M\left( {\dfrac{\pi }{6};0} \right)\).
Tính tích phân \(I = \int\limits_0^{\dfrac{\pi }{2}} {x.\cos \left( {a - x} \right)\,dx} \).
Hình chóp S.ABC có đáy là tam giác vuông tại A, cạnh AB = a, BC = 2a, chiều cao \(SA = a\sqrt 6 \). Thể tích của khối chóp là:
Một hình trụ \(\left( H \right)\) có diện tích xung quanh bằng \(4\pi \). Biết thiết diện của \(\left( H \right)\) qua trục là hình vuông. Diện tích toàn phần của \(\left( H \right)\) bằng
Tìm tất cả các giá trị thực của tham số m để đường thẳng y = 4m cắt đồ thị hàm số \(y = {x^4} - 8{x^2} + 3\) tại bốn điểm phân biệt ?
Cho f(x) là hàm liên tục trên (a ; b) và không phải là hàm hằng. Giả sử F(x) là một nguyên hàm của f(x). Lựa chọn phương án đúng:


