Cho lăng trụ tam giác ABC.A’B’C’ có đáy là tam giác đều cạnh a. Hình chiếu của A’ lên mặt phẳng (ABC) trùng với trọng tâm của tam giác ABC, AA’ = 2a. M là trung điểm của B’C’. Khi đó khoảng cách từ C’ đến mặt phẳng (A’BM) là:
A. \(\frac{{a\sqrt {21} }}{{\sqrt {47} }}\)
B. \(\frac{{a\sqrt 3 }}{3}\)
C. \(\frac{{a\sqrt {26} }}{{\sqrt {107} }}\)
D. \(\frac{a}{2}\)
Lời giải của giáo viên
ToanVN.com
.png)
Gọi N là trung điểm của BC, G là trọng tâm tam giác ABC. Dựng hình chữ nhật ANBD.
Kẻ GI // BC \(\left( {I \in BD} \right),GH \bot A'I\left( {H \in A'I} \right)\)
+) ta có: \(C'N//(A'MB)\) (do C’N//MB)
\( \Rightarrow d\left( {C';(A'BM)} \right) = d\left( {N;(A'BM)} \right)\)
Mà \(GN//(A'BM)\) (do GN // A'M)
\( \Rightarrow d\left( {N;(A'BM)} \right) = d\left( {G;(A'BM)} \right) \Rightarrow d\left( {C';(A'BM)} \right) = d\left( {G;(A'BM)} \right)\)
+) Ta có: \(BD//AN,AN//A'M \Rightarrow BD//A'M \Rightarrow A',M,B,D\) đồng phẳng
+) \(\left\{ \begin{array}{l}
BD \bot GI(doANBDlaHCN)\\
BD \bot A'G(doA'G \bot (ABC))
\end{array} \right. \Rightarrow BD \bot (A'GI) \Rightarrow BD \bot GH\)
Mà \(A'I \bot GH \Rightarrow GH \bot (A'MB) \Rightarrow d\left( {G;(A'BM)} \right) = GH\)
+) Tính GH:
\(\Delta ABC\) đều, cạnh \(a \Rightarrow AN = \frac{{a\sqrt 3 }}{2},AG = \frac{2}{3}AN = \frac{{a\sqrt 3 }}{3}\)
\(\Delta AA'G\) vuông tại G \( \Rightarrow A'G = \sqrt {AA{'^2} - A{G^2}} = \sqrt {4{a^2} - \frac{{a{}^2}}{3}} = \sqrt {\frac{{11}}{3}a} \)
GNBI là hình chữ nhật \( \Rightarrow GI = NB = \frac{a}{2}\)
\(\Delta A'GI\) vuông tại G, \(GH \bot A'I \Rightarrow \frac{1}{{G{H^2}}} = \frac{1}{{G{I^2}}} + \frac{1}{{A'{G^2}}} = \frac{1}{{\frac{{{a^2}}}{4}}} + \frac{1}{{\frac{{11}}{3}{a^2}}} = \frac{{47}}{{11{a^2}}} \Rightarrow GH = \sqrt {\frac{{11}}{{47}}} a\)
\( \Rightarrow d\left( {C';(A'BM)} \right) = \frac{{\sqrt {11} }}{{\sqrt {47} }}a\)
CÂU HỎI CÙNG CHỦ ĐỀ
Cho hàm số \(y = \left| {{x^3} - mx + 1} \right|.\) Gọi S là tập tất cả các số tự nhiên m sao cho hàm số đồng biến trên \(\left[ {1; + \infty } \right).\) Tìm số phân tử của S.
Cho hàm số \(y = \frac{x}{{1 - x}}\left( C \right).\) Tìm m để đường thẳng \(d:y = mx - m - 1\) cắt (C) tại 2 điểm phân biệt M, N sao cho \(A{M^2} + A{N^2}\) đạt giá trị nhỏ nhất với A(-1;1).
Cắt khối nón bởi một mặt phẳng qua trục tạo thành một tam giác đều có cạnh bằng a. Thể tích của khối nón là:
Một hình hộp đứng có đáy là hình thoi (không phải hình vuông) có bao nhiêu mặt phẳng đối xứng
Số tiếp tuyến với đồ thị hàm số \(y = {x^3} - 3{x^2} - 2\) sao cho tiếp tuyến song song với đường thẳng y = 9x - 29 là:
Thể tích khối cầu có bán kính bằng \(\frac{a}{2}\) là:
Cho x, y là hai số không âm thỏa mãn x + y = 2. Giá trị nhỏ nhất của biểu thức \(P = \frac{1}{3}{x^3} + {x^2} + {y^2} - x + 1\)
Cho tứ diện đều S.ABC có cạnh bằng 1. Mặt phẳng (P) đi qua điểm S và trọng tâm G của tam giác ABC cắt các cạnh AB, AC lần lượt tại M, N. Tính thể tích nhỏ nhất Vmin của khối tứ diện SAMN.
Cho hàm số y = f(x) có đồ thị như hình dưới đây. Chọn khẳng định đúng.
.png)
Cho các số thực dương a, b thỏa mãn \({\log _{16}}a = {\log _{25}}\frac{{2a - b}}{3}.\) Tính tỉ số \(T = \frac{a}{b}.\)
Kết luận nào là đúng về GTLN và GTNN của hàm số \(y = \sqrt {x - {x^2}} \) ?
Cho tứ diện ABCD. Gọi I là trung điểm của BC, M là điểm trên cạnh DC. Một mp \(\left( \alpha \right)\) qua M, song song BC và AI. Gọi P, Q lần lượt là giao điểm của \(\left( \alpha \right)\) với BD và AD. Xét các mệnh đề sau:
(1) MP // BC (2) MQ // AC (3) PQ // AI (4) (MPQ) // (ABC)
Số mệnh đề đúng là:
Số nghiệm của phương trình \({2^{2{x^2} - 7x + 5}} = 1\) là:
Cho đa giác đều n đỉnh, \(n \in R\) và n > 3. Tìm n biết rằng đa giác đã cho có 135 đường chéo


