Cho hàm số bậc ba \(y=f\left( x \right)\) có đồ thị là đường cong \(\left( C \right)\) trong hình bên. Hàm số \(f\left( x \right)\) đạt cực trị tại hai điểm \({{x}_{1}},\,\,{{x}_{2}}\) thỏa \(f\left( {{x}_{1}} \right)+f\left( {{x}_{2}} \right)=0\). Gọi \(A,\,\,B\) là hai điểm cực trị của đồ thị \(\left( C \right);M,\,\,N,\,\,K\) là giao điểm của \(\left( C \right)\) với trục hoành; S là diện tích của hình phẳng được gạch trong hình, \({{S}_{2}}\) là diện tích tam giác NBK. Biết tứ giác MAKB nội tiếp đường tròn, khi đó tỉ số \(\frac{{{S}_{1}}}{{{S}_{2}}}\) bằng
.jpg.png)
A. \(\frac{2\sqrt{6}}{3}\).
B. \(\frac{\sqrt{6}}{2}\).
C. \(\frac{5\sqrt{3}}{6}\).
D. \(\frac{3\sqrt{3}}{4}\).
Lời giải của giáo viên
ToanVN.com
Kết quả bài toán không thay đổi khi ta tịnh tiến đồ thị đồ thị \(\left( C \right)\) sang trái sao cho điểm uốn trùng với gốc tọa độ O. (như hình dưới)
.jpg.png)
Do \(f\left( x \right)\) là hàm số bậc ba, nhận gốc tọa độ là tâm đối xứng \(\left( O\equiv N \right)\).
Đặt \({{x}_{1}}=-a,\,\,{{x}_{2}}=a\), với a>0 \(\Rightarrow f'\left( x \right)=k\left( {{x}^{2}}-{{a}^{2}} \right)\) với k>0
\(\Rightarrow f\left( x \right)=k\left( \frac{1}{3}{{x}^{3}}-{{a}^{2}}x \right)\) \(\Rightarrow {{x}_{M}}=-a\sqrt{3},\,\,{{x}_{K}}=a\sqrt{3}\)
Có MAKB nội tiếp đường tròn tâm O \(\Rightarrow OA=OM=a\sqrt{3}\)
Có \(f\left( {{x}_{1}} \right)=\sqrt{O{{A}^{2}}-{{x}_{1}}^{2}}\Leftrightarrow f\left( -a \right)=a\sqrt{2}\Leftrightarrow k\left( -\frac{1}{3}{{a}^{3}}+{{a}^{3}} \right)=a\sqrt{2}\Leftrightarrow k=\frac{3\sqrt{2}}{2{{a}^{2}}}\)
\(\Rightarrow f\left( x \right)=\frac{3\sqrt{2}}{2{{a}^{2}}}\left( \frac{1}{3}{{x}^{3}}-{{a}^{2}}x \right)\)
\({{S}_{1}}=\int\limits_{-a\sqrt{3}}^{0}{f\left( x \right)dx}=\frac{3\sqrt{2}}{2{{a}^{2}}}\left. \left( \frac{1}{12}{{x}^{4}}-\frac{{{a}^{2}}}{2}{{x}^{2}} \right) \right|_{-a\sqrt{3}}^{0}=\frac{9\sqrt{2}}{8}{{a}^{2}}\)
\({{S}_{2}}={{S}_{\Delta AMO}}=\frac{1}{2}f\left( -a \right).MO=\frac{1}{2}a\sqrt{2}.a\sqrt{3}=\frac{\sqrt{6}}{2}{{a}^{2}}\)
Vậy \(\frac{{{S}_{1}}}{{{S}_{2}}}=\frac{3\sqrt{3}}{4}\).
CÂU HỎI CÙNG CHỦ ĐỀ
Cho hàm số \(y=f\left( x \right)\) liên tục trên \(\mathbb{R}\) và có bảng xét dấu đạo hàm dưới đây
.png)
Số điểm cực trị của hàm số là
Hàm số \(F\left( x \right)={{x}^{3}}-2{{x}^{2}}+3\) là nguyên hàm của hàm số nào trong các hàm số sau?
Gọi M,m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số \(f\left( x \right)={{x}^{3}}-\frac{3}{2}{{x}^{2}}-6x+1\) trên đoạn \(\left[ 0;3 \right]\). Khi đó 2M-m có giá trị bằng
Có bao nhiêu số nguyên dương \(y\) sao cho ứng với mỗi \(y \) có không quá 10 số nguyên \(x\) thỏa mãn \(\left( {{3}^{x+1}}-\sqrt{3} \right)\left( {{3}^{x}}-y \right)<0\)?
Với \(a\) là số thực dương tùy ý, \(a.\sqrt[3]{{{a}^{2}}}\) bằng
Đồ thị của hàm số \(y=-{{x}^{4}}+2{{x}^{2}}\) cắt trục hoành tại bao nhiêu điểm?
Cần chọn 3 người đi công tác từ một tổ có 30 người, khi đó số cách chọn là:
Trong không gian \(Oxyz\) Cho \(d\,:\,\,\frac{x-4}{2}=\frac{y-5}{-1}=\frac{z-3}{2}\) và hai điểm \(A\left( \,3;\,1;\,2 \right);\,\,B\left( \,-1;\,3;-2 \right)\) Mặt cầu tâm \(I\) bán kính \(R\) đi qua hai điểm hai điểm \(A,\,B\) và tiếp xúc với đường thẳng \(d.\) Khi \(R\) đạt giá trị nhỏ nhất thì mặt phẳng đi qua ba điểm \(A,\,B,\,I\) là \(\left( P \right):\,\,2x+by+c\text{z}+d=0.\) Tính \(d+b-c.\)
Tập nghiệm của bất phương trình \({{\log }_{3}}\left( 25-{{x}^{2}} \right)\le 2\) là
Công thức thể tích của khối nón có bán kính đáy là \(\frac{r}{2}\) và chiều cao h là
Trong không gian \(Oxyz\), mặt cầu \(\left( S \right):{{x}^{2}}+{{\left( y-1 \right)}^{2}}+{{\left( z+3 \right)}^{2}}=25\) có tâm là
Cho hai số phức z và \(\text{w}\) thỏa mãn z=-i+2 và \(\overline{\text{w}}=-3-2i\). Số phức \(\overline{z}.\text{w}\) bằng:
Trong không gian với hệ tọa độ \(Oxyz\), cho hai đường thẳng \(\left( {{d}_{1}} \right):\left\{ \begin{align} & x=t \\ & y=-1+2t \\ & z=t \\ \end{align} \right.\) và \(\left( {{d}_{2}} \right):\frac{x}{1}=\frac{y-1}{-2}=\frac{z-1}{3}\). Đường thẳng \(\Delta \) cắt cả hai đường thẳng \({{d}_{1}}\),\({{d}_{2}}\) và song song với đường thẳng \(d:\frac{x-4}{1}=\frac{y-7}{4}=\frac{z-3}{-2}\) đi qua điểm nào trong các điểm dưới đây?
Trong không gian Oxyz, mặt cầu có tâm \(I\left( 3;-1;2 \right)\) và tiếp xúc với trục \(Ox\) có phương trình là:


