Lời giải của giáo viên
ToanVN.com
Hàm số có ba điểm cực trị.
CÂU HỎI CÙNG CHỦ ĐỀ
Hàm số \(F\left( x \right)={{x}^{3}}-2{{x}^{2}}+3\) là nguyên hàm của hàm số nào trong các hàm số sau?
Có bao nhiêu số nguyên dương \(y\) sao cho ứng với mỗi \(y \) có không quá 10 số nguyên \(x\) thỏa mãn \(\left( {{3}^{x+1}}-\sqrt{3} \right)\left( {{3}^{x}}-y \right)<0\)?
Gọi M,m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số \(f\left( x \right)={{x}^{3}}-\frac{3}{2}{{x}^{2}}-6x+1\) trên đoạn \(\left[ 0;3 \right]\). Khi đó 2M-m có giá trị bằng
Với \(a\) là số thực dương tùy ý, \(a.\sqrt[3]{{{a}^{2}}}\) bằng
Đồ thị của hàm số \(y=-{{x}^{4}}+2{{x}^{2}}\) cắt trục hoành tại bao nhiêu điểm?
Cần chọn 3 người đi công tác từ một tổ có 30 người, khi đó số cách chọn là:
Trong không gian \(Oxyz\) Cho \(d\,:\,\,\frac{x-4}{2}=\frac{y-5}{-1}=\frac{z-3}{2}\) và hai điểm \(A\left( \,3;\,1;\,2 \right);\,\,B\left( \,-1;\,3;-2 \right)\) Mặt cầu tâm \(I\) bán kính \(R\) đi qua hai điểm hai điểm \(A,\,B\) và tiếp xúc với đường thẳng \(d.\) Khi \(R\) đạt giá trị nhỏ nhất thì mặt phẳng đi qua ba điểm \(A,\,B,\,I\) là \(\left( P \right):\,\,2x+by+c\text{z}+d=0.\) Tính \(d+b-c.\)
Tập nghiệm của bất phương trình \({{\log }_{3}}\left( 25-{{x}^{2}} \right)\le 2\) là
Công thức thể tích của khối nón có bán kính đáy là \(\frac{r}{2}\) và chiều cao h là
Trong không gian \(Oxyz\), mặt cầu \(\left( S \right):{{x}^{2}}+{{\left( y-1 \right)}^{2}}+{{\left( z+3 \right)}^{2}}=25\) có tâm là
Trong không gian với hệ tọa độ \(Oxyz\), cho hai đường thẳng \(\left( {{d}_{1}} \right):\left\{ \begin{align} & x=t \\ & y=-1+2t \\ & z=t \\ \end{align} \right.\) và \(\left( {{d}_{2}} \right):\frac{x}{1}=\frac{y-1}{-2}=\frac{z-1}{3}\). Đường thẳng \(\Delta \) cắt cả hai đường thẳng \({{d}_{1}}\),\({{d}_{2}}\) và song song với đường thẳng \(d:\frac{x-4}{1}=\frac{y-7}{4}=\frac{z-3}{-2}\) đi qua điểm nào trong các điểm dưới đây?
Cho hai số phức z và \(\text{w}\) thỏa mãn z=-i+2 và \(\overline{\text{w}}=-3-2i\). Số phức \(\overline{z}.\text{w}\) bằng:
Cho hình lăng trụ đứng \(ABC.{A}'{B}'{C}'\) có đáy ABC là tam giác vuông cân tại có \(AB=a,A{A}'=a\sqrt{2}\). Góc giữa đường thẳng \({A}'C\) với mặt phẳng \(\left( A{A}'{B}'B \right)\) bằng:
Tìm đường tiệm cận đứng và đường tiệm cận ngang của đồ thị hàm số \(y=\frac{2x-1}{x+1}\).
.png)


