Lời giải của giáo viên
ToanVN.com
\(\begin{array}{l}
\left| {{z_1} - {z_2}} \right| = \left| {1 + i - 1 + i} \right|\\
= \left| {2i} \right| = \sqrt {{0^2} + {2^2}} = 2
\end{array}\)
nên A sai.
\(\begin{array}{l}\frac{{{z_1}}}{{{z_2}}} = \frac{{1 + i}}{{1 - i}} = \frac{{{{\left( {1 + i} \right)}^2}}}{{\left( {1 - i} \right)\left( {1 + i} \right)}}\\ = \frac{{1 + 2i + {i^2}}}{{1 - {i^2}}} = \frac{{1 + 2i - 1}}{{1 + 1}}\\ = \frac{{2i}}{2} = i\end{array}\)
Nên B đúng.
\({z_1} + {z_2} = 1 + i + 1 - i = 2\)
Nên C đúng.
\(\begin{array}{l}{z_1}.{z_2} = \left( {1 + i} \right)\left( {1 - i} \right)\\ = 1 - {i^2} = 1 + 1 = 2\\ \Rightarrow \left| {{z_1}.{z_2}} \right| = 2\end{array}\)
Nên D đúng.
Chọn đáp án A.
CÂU HỎI CÙNG CHỦ ĐỀ
Điều kiện xác định của phương trình \({\log _x}(2{x^2} - 7x + 5) = 2\) là:
Tính nguyên hàm \(\int {\dfrac{{2{x^2} - 7x + 7}}{{x - 2}}\,dx} \) ta được:
Cho hình nón tròn xoay đỉnh \(S,\)đáy là đường tròn tâm \(O,\) bán kính đáy \(r = 5\). Một thiết diện qua đỉnh là tam giác \(SAB\) đều có cạnh bằng 8. Khoảng cách từ \(O\) đến mặt phẳng \(\left( {SAB} \right)\) bằng
Tính nguyên hàm \(\int {{{\left( {{e^3}} \right)}^{\cos x}}\sin x\,dx} \) ta được:
Cho x và y là hai số phức. Trong các phương án sau, hãy lựa chọn phương án sai .
Tìm hàm số F(x) biết rằng \(F'(x) = \dfrac{1}{{{{\sin }^2}x}}\) và đồ thị của hàm số F(x) đi qua điểm \(M\left( {\dfrac{\pi }{6};0} \right)\).
Tính tích phân \(I = \int\limits_0^{\dfrac{\pi }{2}} {x.\cos \left( {a - x} \right)\,dx} \).
Hình chóp S.ABC có đáy là tam giác vuông tại A, cạnh AB = a, BC = 2a, chiều cao \(SA = a\sqrt 6 \). Thể tích của khối chóp là:
Một hình trụ \(\left( H \right)\) có diện tích xung quanh bằng \(4\pi \). Biết thiết diện của \(\left( H \right)\) qua trục là hình vuông. Diện tích toàn phần của \(\left( H \right)\) bằng
Tìm tất cả các giá trị thực của tham số m để đường thẳng y = 4m cắt đồ thị hàm số \(y = {x^4} - 8{x^2} + 3\) tại bốn điểm phân biệt ?
Cho hai số phức \({z_1} = 2 + 3i\,,\,\,{z_2} = 1 - 2i\). Tìm khẳng định sai.


