Số các giá trị nguyên của tham số m để hàm số \(y = \log \left( {mx - m + 2} \right)\) xác định trên \(\left[ {\frac{1}{2}; + \infty } \right)\) là:
lượt xem
lượt xem
lượt xem
lượt xem
Cho khối chóp S.ABC có thể tích bằng 16cm3. Gọi M, N, P lần lượt là trung điểm của các cạnh SA, SB, SC. Tính thể tích V của khối tứ diện AMNP.
lượt xem
Có bao nhiêu giá trị nguyên của tham số m để đồ thị hàm số \(y = {x^3} - 8{{\rm{x}}^2} + ({m^2} + 11){\rm{x}}\,{\rm{ - }}\,{\rm{2}}{{\rm{m}}^2} + 2\) có hai điểm cực trị nằm về hai phía của trục Ox.
lượt xem
Cho hàm số \(y=f(x)\) có đạo hàm liên tục trên R và có đồ thị hàm số \(y = f'(x)\) như hình vẽ. Đặt \(g(x) = f(\left| {{x^3}} \right|)\). Tìm số điểm cực trị của hàm số \(y=g(x)\).
.png)
lượt xem
Cho ba hình cầu tiếp xúc ngoài nhau từng đôi một và cùng tiếp xúc với một mặt phẳng. Các tiếp điểm của các hình cầu trên mặt phẳng lập thành tam giác có các cạnh bằng 4, 2 và 3. Tích bán kính của ba hình cầu trên là:
lượt xem
Trong một trò chơi điện tử, xác suất để game thủ thắng trong một trận là 0,4 (không có hòa). Hỏi phải chơi tối thiểu bao nhiêu trận để xác suất thắng ít nhất một trận trong loạt chơi đó lớn hơn 0,95.
lượt xem
Cho hàm số f thỏa mãn \(f\left( {\cot x} \right) = \sin 2x + \cos 2x,\forall x \in \left( {0;\pi } \right)\) . Giá trị lớn nhất của hàm số \(g\left( x \right) = f\left( {{{\sin }^2}x} \right).f\left( {{{\cos }^2}x} \right)\) trên R là.
lượt xem
Cho hình chóp tứ giác đều S.ABCD có cạnh đáy bằng \(a\). Gọi M, N lần lượt là trung điểm của SB và SD. Biết AM vuông góc với CN. Tính bán kính mặt cầu ngoại tiếp hình chóp S.ABCD.
lượt xem
Cho hàm số \(y = \frac{{2x - 5}}{{x + 1}}\) có đồ thị (C) và điểm \(M\left( { - 1;2} \right)\). Xét điểm A bất kì trên (C) có \({x_A} = a,\left( {a \ne - 1} \right)\). Đường thẳng MA cắt (C) tại điểm B (khác A) . Hoành độ điểm B là:
lượt xem
Cho các số thực \(a,b\) sao cho \(0 < a,b \ne 1\), biết rằng đồ thị các hàm số \(y = {a^x}\) và \(y = {\log _b}x\) cắt nhau tại điểm \(M(\sqrt {2018} ;\sqrt[5]{{{{2019}^{ - 1}}}})\). Mệnh đề nào dưới đây đúng?
lượt xem
Biết hàm số \(y = a{x^4} + b{x^2} + c{\rm{ }}\left( {a \ne 0} \right)\) đồng biến trên \(\left( {0; + \infty } \right)\), mệnh đề nào dưới đây đúng?
lượt xem
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh \(a\), SA vuông góc với đáy và \(SA=2a\). Gọi d là trung điểm của SD. Tính khoảng cách d giữa đường thẳng SC và mặt phẳng (ACM)
lượt xem
Cho lăng trụ đứng ABC.A’B’C’, đáy ABC là tam giác vuông cân tại A. E là trung điểm của B’C’, CB’ cắt BE tại M. Tính thể tích V của khối tứ diện ABCM biết AB = 3a, AA’ = 6a.
lượt xem
Cho hàm số \(y=f(x)\) có đạo hàm trên R. Xét các hàm số \(g(x) = f\left( x \right) - f\left( {2x} \right)\) và \(h(x) = f(x) - f(4x)\). Biết rằng \(g'(1) = 18\) và \(g'(2) = 1000\). Tính \(h'(1)\):
lượt xem
Sau khi khai triển và rút gọn thì \(P(x) = {\left( {1 + x} \right)^{12}} + {\left( {{x^2} + \frac{1}{x}} \right)^{18}}\) có tất cả bao nhiêu số hạng?
lượt xem
Tìm tất cả các giá trị thực của tham số m sao cho hàm số \(y = \frac{{x - 1}}{{x - m}}\) nghịch biến trên khoảng \(\left( { - \infty ;2} \right)\).
lượt xem
Cho hình chóp tứ giác đều có cạnh đáy bằng \(x\). Diện tích xung quanh gấp đôi diện tích đáy. Khi đó thể tích khối chóp bằng:
lượt xem
lượt xem
Cho hàm số \(y = f(x)\) liên tục trên R\{1} có bảng biến thiên như hình vẽ. Tổng số đường tiệm cận đứng và đường tiệm cận ngang của đồ thị hàm số \(y = f(x)\)
.png)
lượt xem
Cho hàm số \(y = \frac{{2018}}{{x - 1}}.\) Mệnh đề nào dưới đây đúng?
lượt xem
Cho các hàm số lũy thừa \(y = {x^\alpha },y = {x^\beta },y = {x^\gamma }\) có đồ thị như hình vẽ. Mệnh đề đúng là:
.png)
lượt xem
Cho hàm số \(y = {\sin ^2}x.\) Mệnh đề nào sau đây đúng?
lượt xem
Cắt hình nón đỉnh S bởi mặt phẳng đi qua trục ta được một tam giác vuông cân, cạnh huyền bằng \(a\sqrt 2 \). Thể tích khối nón là :
lượt xem
Tìm đạo hàm của hàm số \(y = {\log _2}\left( {2x + 1} \right).\)
lượt xem
Một gia đình cần xây một bể nước hình hộp chữ nhật để chứa \(10m^3\) nước. Biết mặt đáy có kích thước chiều dài 2,5m và chiều rộng 2m. Khi đó chiều cao của bể nước là:
lượt xem
Cho hàm số \(y = f\left( x \right)\) có bảng biến thiên như sau:
Mệnh đề nào dưới đây đúng?
lượt xem
Mệnh đề nào trong các mệnh đề dưới đây sai?
lượt xem
Cho khai triển \({\left( {x + \frac{2}{{\sqrt x }}} \right)^6}\) với \(x>0\). Tìm hệ số của số hạng chứa \(x^3\) trong khai triển trên.
lượt xem
Từ các chữ số 0,1,2,3,5 có thể lập thành bao nhiêu số tự nhiên không chia hết cho 5 gồm 4 chữ số đôi một khác nhau?
lượt xem
Khối đa diện đều loại {5;3} có tên gọi nào dưới đây?
lượt xem
Tính thể tích của vật thể tròn xoay khi quay mô hình (như hình vẽ) quanh trục DF :
.png)
lượt xem
Cho \(a > 0,{\rm{ }}a \ne 1\) và \(x, y\) là hai số thực thỏa mãn \(xy>0\). Mệnh đề nào dưới đây đúng?
lượt xem
Cho đường thẳng d2 cố định, đường thẳng d1 song song và cách d2 một khoảng cách không đổi. Khi d1 quay quanh d2 ta được
lượt xem
Đồ thị như hình vẽ là đồ thị của hàm số nào dưới đây?
.png)
lượt xem
Cho hàm số \(y = f(x)\) liên tục trên R và có bảng xét dấu của đạo hàm như hình vẽ.
.png)
Hàm số \(y = f(x)\) có bao nhiêu điểm cực trị?
lượt xem
Giá trị nhỏ nhất của hàm số \(y = \frac{{x - 1}}{{2x + 1}}\) trên đoạn \(\left[ {1;2} \right]\) là:
lượt xem
Với các số thực \(a, b\) bất kỳ, mệnh đề nào dưới đây đúng ?
lượt xem
Tìm tập xác định của hàm số \(y = {\left( {{x^2} - {\rm{3}}x} \right)^{ - 4}}.\)
lượt xem
Cho một khối chóp có đáy là đa giác lồi n cạnh. Trong các mệnh đề sau đây, mệnh đề nào đúng:
lượt xem
Tìm tất cả giá trị thực của tham số m để đồ thị hàm số \(y = {x^4} - 2m{x^2} + 2m - 3\) có ba điểm cực trị là ba đỉnh của tam giác cân.
lượt xem
Đồ thị hàm số \(y = - \frac{1}{2}{x^4} + {x^2} + \frac{3}{2}\) cắt trục hoành tại mấy điểm?
lượt xem
Cho hàm số \(y = f(x)\) có bảng biến thiên như hình vẽ. Số nghiệm của phương trình \(f(x) + 2 = 0\) là:
.png)
lượt xem
lượt xem
lượt xem
Biết rằng giá trị lớn nhất của hàm số \(y = \left| {{x^4} - 38{x^2} + 120x + 4m} \right|\) trên đoạn \(\left[ {0\,;\,2} \right]\) đạt giá trị nhỏ nhất. Khi đó giá trị của tham số m bằng
lượt xem
Phương trình \({\left( {2 + \sqrt 3 } \right)^x} + \left( {1 - 2a} \right){\left( {2 - \sqrt 3 } \right)^x} - 4 = 0\) có 2 nghiệm phân biệt \({x_1},\,\,{x_2}\) thỏa mãn \({x_1} - {x_2} = {\log _{2 + \sqrt 3 }}3\). Khi đó \(a\) thuộc khoảng
lượt xem
.png)
.png)