Một người lần đầu gửi vào ngân hàng 100 triệu đồng theo thể thức lãi kép (tức là tiền lãi của kỳ trước được cộng vào vốn của kỳ kế tiếp) với kì hạn 3 tháng, lãi suất 2% một quý. Sau đúng 6 tháng, người đó gửi thêm 100 triệu đồng với kỳ hạn và lãi suất như trước đó. Tổng số tiền người đó nhận được sau 1 năm gửi tiền vào ngân hàng gần bằng với kết quả nào sau đây. Biết rằng trong suốt thời gian gửi tiền lãi suất ngân hàng không thay đổi và người đó không rút tiền ra.
A. 212 triệu đồng
B. 216 triệu đồng
C. 210 triệu đồng
D. 220 triệu đồng
Lời giải của giáo viên
ToanVN.com
CÂU HỎI CÙNG CHỦ ĐỀ
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh \(a\), SA vuông góc với đáy và \(SA=2a\). Gọi d là trung điểm của SD. Tính khoảng cách d giữa đường thẳng SC và mặt phẳng (ACM)
Giá trị nhỏ nhất của hàm số \(y = \frac{{x - 1}}{{2x + 1}}\) trên đoạn \(\left[ {1;2} \right]\) là:
Cho hàm số \(y = f(x)\) liên tục trên R\{1} có bảng biến thiên như hình vẽ. Tổng số đường tiệm cận đứng và đường tiệm cận ngang của đồ thị hàm số \(y = f(x)\)
.png)
Có bao nhiêu giá trị nguyên của tham số m để đồ thị hàm số \(y = {x^3} - 8{{\rm{x}}^2} + ({m^2} + 11){\rm{x}}\,{\rm{ - }}\,{\rm{2}}{{\rm{m}}^2} + 2\) có hai điểm cực trị nằm về hai phía của trục Ox.
Số các giá trị nguyên của tham số m để hàm số \(y = \log \left( {mx - m + 2} \right)\) xác định trên \(\left[ {\frac{1}{2}; + \infty } \right)\) là:
Cho các hàm số lũy thừa \(y = {x^\alpha },y = {x^\beta },y = {x^\gamma }\) có đồ thị như hình vẽ. Mệnh đề đúng là:
.png)
Cho hình hộp đứng ABCD.A'B'C'D' có \(AB =a, AD = 2a, BD = a\sqrt 3 \). Góc tạo bởi AB' và mặt phẳng (ABCD) bằng \(60^0\) Tính thể tích của khối chóp D'ABCD
Cho hàm số \(y = f(x)\) liên tục trên R và có bảng xét dấu của đạo hàm như hình vẽ.
.png)
Hàm số \(y = f(x)\) có bao nhiêu điểm cực trị?
Cho hình chóp tứ giác đều S.ABCD có cạnh đáy bằng \(a\). Gọi M, N lần lượt là trung điểm của SB và SD. Biết AM vuông góc với CN. Tính bán kính mặt cầu ngoại tiếp hình chóp S.ABCD.
Đồ thị như hình vẽ là đồ thị của hàm số nào dưới đây?
.png)
Cho hàm số \(y = \frac{{2018}}{{x - 1}}.\) Mệnh đề nào dưới đây đúng?
Cho các số thực \(a,b\) sao cho \(0 < a,b \ne 1\), biết rằng đồ thị các hàm số \(y = {a^x}\) và \(y = {\log _b}x\) cắt nhau tại điểm \(M(\sqrt {2018} ;\sqrt[5]{{{{2019}^{ - 1}}}})\). Mệnh đề nào dưới đây đúng?
Cho một khối chóp có đáy là đa giác lồi n cạnh. Trong các mệnh đề sau đây, mệnh đề nào đúng:
Cho hình chóp S.ABC có \(SA = SB = SC = a\), \(\widehat {{\rm{AS}}B} = {60^0},\widehat {BSC} = {90^0}\) và \(\widehat {CSA} = {120^0}\). Tính khoảng cách d giữa hai đường thẳng AC và SB.
Đồ thị hàm số \(y = - \frac{1}{2}{x^4} + {x^2} + \frac{3}{2}\) cắt trục hoành tại mấy điểm?


