lượt xem
Tập hợp tất cả các giá trị của tham số m để hàm số \(y = \frac{{4x + 7}}{{{{\log }_{2018}}\left( {{x^2} - 2x + {m^2} - 6m + 10} \right)}}\) xác định với mọi \(x \in R\) là:
lượt xem
Một hộp sữa hình trụ có thể tích V (không dổi) được làm từ một tấm tôn có diện tích đủ lớn. Nếu hộp sữa chỉ kín một đáy thì để tốn ít vật liệu nhất, hệ thức giữa bán kính đáy R và đường cao h bằng:
lượt xem
lượt xem
Cho hàm số \(y=f(x)\) có đạo hàm \(y' = {x^2} - 3x + {m^2} + 5m + 6\). Tìm tất cả các giá trị của m để hàm số đồng biến trên (3;5)
lượt xem
Cho một tập hợp A gồm 9 phân tử. Có bao nhiêu cặp tập con khác rỗng không giao nhau của tập A?
lượt xem
Gọi F(x) là một nguyên hàm của hàm số \(f(x) = {x^3} - 2{x^2} + 1\) thỏa mãn F(0) = 5. Khi đó phương trình F(x) = 5 có số nghiệm thực là:
lượt xem
Gọi M là giá trị lớn nhất của hàm số \(f(x) = 6\sqrt {{x^2} - 6x + 12} + 6x - {x^2} - 4\). Tính tích các nghiệm của phương trình \(f(x)=M\).
lượt xem
Có bao nhiêu giá trị nguyên của tham số m để bất phương trình \(\log \left( {2{x^2} + 3} \right) < \log \left( {{x^2} + mx + 1} \right)\) có tập nghiệm là R.
lượt xem
lượt xem
Tìm tất cả các giá trị của tham số m để phương trình \({\left( {7 - 3\sqrt 5 } \right)^{{x^2}}} + m{\left( {7 + 3\sqrt 5 } \right)^{{x^2}}} = {2^{{x^2} - 1}}\) có đúng bốn nghiệm phân biệt.
lượt xem
lượt xem
Tính tích tất cả các nghiệm của phương trình \({2^{2{x^2} + 5x + 4}} = 4\)
lượt xem
Có bao nhiêu giá trị nguyên của tham số m để hàm số: \(y = {x^8} + (m + 1){x^5} - ({m^2} - 1){x^4} + 1\) đạt cực tiểu tại x = 0?
lượt xem
Cho hình chóp S.ABCD có \(SC = x(0 < x < a\sqrt 3 )\), các cạnh còn lại đều bằng a. Biết rằng thể tích khối chóp S.ABCD lớn nhất khi và chỉ khi \(x = \frac{{a\sqrt m }}{n}(m,n \in N*)\). Mệnh đề nào sau đây đúng?
lượt xem
Trong không gian với hệ trục tọa độ Oxyz cho \(\overrightarrow a = (1; - 2;3)\) và \(\overrightarrow b = (2; - 1; - 1)\). Khẳng định nào sau đây đúng?
lượt xem
Cho hai góc lượng giác a và b. Trong các khẳng định sau, khẳng định nào là khẳng định sai?
lượt xem
Tìm nguyên hàm của hàm số \(f(x) = \frac{1}{{x{{\left( {\ln x + 2} \right)}^2}}}\)
lượt xem
Cho hàm số \(y=f(x)\) có đạo hàm cấp 2 trên khoảng K và \({x_0} \in K\). Mệnh đề nào sau đây đúng?
lượt xem
Nguyên hàm của hàm số \(f(x) = 4{x^3} + x - 1\) là:
lượt xem
Cho khối chóp SABCD có đáy là hình vuông cạnh \(\frac{a}{{\sqrt 2 }},\Delta SAC\) vuông tại S và nằm trong mặt phẳng vuông góc với đáy, cạnh bên SA tạo với đáy góc \(60^0\). Tính thể tích V của khối chóp SABCD.
lượt xem
Cho tứ diện ABCD có \((ACD) \bot (BCD),AC = AD = BC = BD = a,CD = 2x\). Giá trị của x để hai mặt phẳng (ABC) và (ABD) vuông góc với nhau là:
lượt xem
Tìm tập nghiệm S của phương trình \({2^{x + 1}} = 4\)
lượt xem
Cho x là số thực dương, khai triển nhị thức \({\left( {{x^2} + \frac{1}{x}} \right)^{12}}\) ta có hệ số của số hạng chứa bằng 792. Giá trị của m là:
lượt xem
Cho hàm số \(y = {\log _{\frac{1}{2}}}\left| x \right|\). Mệnh đề nào dưới đây là mệnh đề sai?
lượt xem
Cắt khối trụ bởi một mặt phẳng qua trục ta được thiết diện là hình chữ nhật ABCD có AB và CD thuộc hai đáy hình trụ, \(AB = 4a;AC = 5a\). Tính thể tích khối trụ:
lượt xem
Giá trị lớn nhất của hàm số \(y = {x^2} + \frac{{16}}{x}\) trên đoạn \(\left[ {\frac{3}{2};4} \right]\) bằng:
lượt xem
Trong mặt phẳng với hệ tọa độ Oxy cho hai điểm A(-2;4) và B(8;4). Tìm tọa độ điểm C trên trục Ox, có hoành độ dương sao cho tam giác ABC vuông tại C.
lượt xem
Trong các mệnh đề sau đây, mệnh đề nào là đúng?
lượt xem
Gọi A, B lần lượt là các giá trị nhỏ nhất, giá trị lớn nhất của hàm số \(y = \frac{{x + {m^2} + 2m}}{{x - 2}}\) trên đoạn [3;4]. Tìm tất cả các giá trị thực của tham số m để \(A + B = \frac{{19}}{2}\)
lượt xem
Cho hình chóp SABCD, có đáy ABCD là hình vuông tâm O, cạnh bên vuông góc với mặt đáy. Gọi M là trung điểm của SA, N là hình chiếu vuông góc của A lên SO. Mệnh đề nào sau đây đúng?
lượt xem
Công thức nào sau đây là sai:
lượt xem
Một hình lăng trụ tam giác đều có bao nhiêu mặt phẳng đối xứng?
lượt xem
Cho hai góc nhọn a và b thỏa mãn \(\tan a = \frac{1}{7}\) và \(\tan b = \frac{3}{4}\). Tính a + b.
lượt xem
Đặt \(a = {\log _2}5\) và \(b = {\log _3}5\). Biểu diễn đúng của theo a, b là:
lượt xem
Đạo hàm của hàm số \(y = \ln \left( {5 - 3{x^2}} \right)\) là:
lượt xem
Trong không gian Oxyz, phương trình của mặt phẳng (P) đi qua điểm B(2;1;-3) đồng thời vuông góc với hai mặt phẳng (Q): \(x + y + 3z = 0\), (R): \(2x - y + z = 0\) là:
lượt xem
Cho cấp số nhân \((u_n)\) có \(u_1=2\) và biểu thức \(20{u_1} - 10{u_2} + {u_3}\) đạt giá trị nhỏ nhất. Tìm số hạng thứ bảy của cấp số nhân \((u_n)\)?
lượt xem
Cho hàm số \(y=f(x)\) có đạo hàm \(y' = {x^2}(x - 2)\). Mệnh đề nào sau đây đúng?
lượt xem
Cho hàm số \(y=f(x)\) có \(f'(x) > 0,\forall x \in R\). Tìm tập hợp tất cả các giá trị thực của x để \(f\left( {\frac{1}{x}} \right) < f\left( 1 \right)\)
lượt xem
Xác định các hệ số a, b, c để đồ thị hàm số có đồ thị hàm số như hình vẽ bên:
.png)
lượt xem
Trên đồ thị (C): \(y = \frac{{x + 1}}{{x + 2}}\) có bao nhiêu điểm M mà tiếp tuyến với (C) tại M song song với đường thẳng d: \(x+y=1\)
lượt xem
Tìm tất cả các giá trị của tham số m để phương trình \({x^3} + 3{x^2} - 2 = m\) có hai nghiệm phân biệt.
lượt xem
Trong các giới hạn sau đây, giới hạn nào có giá trị bằng \( + \infty \)?
lượt xem
Hình hộp chữ nhật đứng đáy là hình thoi có bao nhiêu mặt phẳng đối xứng?
lượt xem
Cho khối trụ có thể tích bằng \(45\pi c{m^3}\) , chiều cao 5cm. Tính bán kính R của khối trụ đã cho.
lượt xem
Tìm mệnh đề sai trong các mệnh đề sau?
lượt xem
Cho khối chóp tứ giác đều S.ABCD có thể tích bằng a3 và đáy ABCD là hình vuông cạnh a. Tính \(cos\alpha \) với \(\alpha \) là góc giữa mặt bên và mặt đáy
lượt xem
Cho hình chóp S.ABCD có đáy hình chữ nhật, SA vuông góc với mặt phẳng (ABCD). Tâm mặt cầu ngoại tiếp hình tròn S.ABCD là điểm I với
lượt xem
Cho hàm số \(y = a{x^4} + b{x^2} + c\left( {a \ne 0} \right)\) có bảng biến thiên dưới đây:
.png)
Tính P = a - 2b + 3c
lượt xem