Trong không gian với hệ tọa độ Oxyz, cho \(A\left( { - 3;0;0} \right);B\left( {0;0;3} \right);C\left( {0; - 3;0} \right)\) và mặt phẳng (P): \(x + y + z - 3 = 0\). Tìm trên (P) điểm M sao cho \(\left| {\overrightarrow {MA} + \overrightarrow {MB} - \overrightarrow {MC} } \right|\) nhỏ nhất.
A. \(M\left( {3;3; - 3} \right)\)
B. \(M\left( {3;-3; 3} \right)\)
C. \(M\left( {-3;3; 3} \right)\)
D. \(M\left( {-3;-3; 3} \right)\)
Lời giải của giáo viên
ToanVN.com
Gọi điểm I (a;b;c) thỏa mãn \(\overrightarrow {IA} + \overrightarrow {IB} - \overrightarrow {IC} = \overrightarrow 0 \)
Ta có:
\(\left\{ \begin{array}{l}
\overrightarrow {IA} = ( - 3 - a; - b; - c)\\
\overrightarrow {IB} = ( - a; - b;3 - c)\\
\overrightarrow {IC} = ( - a; - 3 - b; - c)
\end{array} \right. \Rightarrow \overrightarrow {IA} + \overrightarrow {IB} - \overrightarrow {IC} = ( - 3 - a;3 - b;3 - c) = \overrightarrow 0 \Leftrightarrow \left\{ \begin{array}{l}
- 3 - a = 0\\
3 - b = 0\\
3 - c = 0
\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}
a = - 3\\
b = 3\\
c = 3
\end{array} \right. \Rightarrow I( - 3;3;3)\)
Ta có \(\left| {\overrightarrow {MA} + \overrightarrow {MB} - \overrightarrow {MC} } \right| = \left| {\overrightarrow {MI} + \overrightarrow {IA} + \overrightarrow {MI} + \overrightarrow {IB} - \overrightarrow {MI} - \overrightarrow {IC} } \right| = \left| {\overrightarrow {MI} + \left( {\overrightarrow {IA} + \overrightarrow {IB} - \overrightarrow {IC} } \right)} \right| = \left| {\overrightarrow {MI} } \right| = MI\)
Do đó \(\left| {\overrightarrow {MA} + \overrightarrow {MB} - \overrightarrow {MC} } \right|\) nhỏ nhất khi và chỉ khi MI nhỏ nhất \( \Leftrightarrow \) M là hình chiếu của I trên (P)
Ta thấy \( - 3 + 3 + 3 - 3 = 0 \Rightarrow I \in (P) \Rightarrow \) Hình chiếu của I trên (P) là chính nó. Do đó \(M \equiv I \Rightarrow M( - 3;3;3)\)
CÂU HỎI CÙNG CHỦ ĐỀ
Trong không gian với hệ trục tọa độ Oxyz cho \(\overrightarrow a = (1; - 2;3)\) và \(\overrightarrow b = (2; - 1; - 1)\). Khẳng định nào sau đây đúng?
Tìm tất cả các giá trị của tham số m để phương trình \({x^3} + 3{x^2} - 2 = m\) có hai nghiệm phân biệt.
Cho tứ diện ABCD có \((ACD) \bot (BCD),AC = AD = BC = BD = a,CD = 2x\). Giá trị của x để hai mặt phẳng (ABC) và (ABD) vuông góc với nhau là:
Tìm nguyên hàm của hàm số \(f(x) = \frac{1}{{x{{\left( {\ln x + 2} \right)}^2}}}\)
Cho hàm số \(y=f(x)\) xác định và liên tục trên R, có đạo hàm \(f'(x)\). Biết rằng đồ thị hàm số \(f'(x)\) như hình vẽ. Xác định điểm cực đại của hàm số \(g(x)=f(x)+x\).
.png)
Cho một tập hợp A gồm 9 phân tử. Có bao nhiêu cặp tập con khác rỗng không giao nhau của tập A?
Gọi A, B lần lượt là các giá trị nhỏ nhất, giá trị lớn nhất của hàm số \(y = \frac{{x + {m^2} + 2m}}{{x - 2}}\) trên đoạn [3;4]. Tìm tất cả các giá trị thực của tham số m để \(A + B = \frac{{19}}{2}\)
Cho hình chóp SABCD, có đáy ABCD là hình vuông tâm O, cạnh bên vuông góc với mặt đáy. Gọi M là trung điểm của SA, N là hình chiếu vuông góc của A lên SO. Mệnh đề nào sau đây đúng?
Cho x là số thực dương, khai triển nhị thức \({\left( {{x^2} + \frac{1}{x}} \right)^{12}}\) ta có hệ số của số hạng chứa bằng 792. Giá trị của m là:
Cắt khối trụ bởi một mặt phẳng qua trục ta được thiết diện là hình chữ nhật ABCD có AB và CD thuộc hai đáy hình trụ, \(AB = 4a;AC = 5a\). Tính thể tích khối trụ:
Cho hai góc nhọn a và b thỏa mãn \(\tan a = \frac{1}{7}\) và \(\tan b = \frac{3}{4}\). Tính a + b.
Xác định các hệ số a, b, c để đồ thị hàm số có đồ thị hàm số như hình vẽ bên:
.png)
Trong mặt phẳng với hệ tọa độ Oxy cho hai điểm A(-2;4) và B(8;4). Tìm tọa độ điểm C trên trục Ox, có hoành độ dương sao cho tam giác ABC vuông tại C.
Tìm tập nghiệm S của phương trình \({2^{x + 1}} = 4\)


