Đồ thị hàm số \(y=-\frac{{{x}^{4}}}{2}+{{x}^{2}}+\frac{3}{2}\) cắt trục hoành tại mấy điểm?
lượt xem
Đường cong ở hình dưới đây là đồ thị của một trong bốn hàm số dưới đây. Hàm số đó là hàm số nào ?
.jpg.png)
lượt xem
Tiệm cận ngang của đồ thị hàm số \(y=1+\frac{1}{x-1}\) là đường thẳng:
lượt xem
Cho hàm số \(y=f\left( x \right)\) xác định trên \(\mathbb{R}\) có đạo hàm\(f'\left( x \right)=x\left( x-2 \right){{\left( x+1 \right)}^{2}}\left( {{x}^{2}}-4 \right)\). Hàm số đã cho có bao nhiêu điểm cực trị
lượt xem
Cho hàm số bậc ba\(y=a{{x}^{3}}+b{{x}^{2}}+cx+d\,\left( a\ne 0 \right)\) có đồ thị như sau
.jpg.png)
Giá trị cực đại của hàm số là:
lượt xem
Cho hàm số \(y=f\left( x \right)\) có bảng biến thiên như sau:
.png)
Hàm số đã cho nghịch biến trên khoảng nào trong các khoảng dưới đây?
lượt xem
Cho cấp số nhân \(\left( u_{n}^{{}} \right)\) có \(u_{1}^{{}}=2\) và công bội q=-3. Giá trị của \(u_{3}^{{}}\) là:
lượt xem
Có bao nhiêu cách sắp xếp 5 học sinh đứng thành một hàng dọc?
lượt xem
lượt xem
Cho các số thực a,b>1 thỏa mãn \({{a}^{{{\log }_{b}}a}}+{{16}^{{{\log }_{a}}\left( \frac{{{b}^{8}}}{{{a}^{3}}} \right)}}=12{{b}^{2}}.\) Giá trị của \({{a}^{3}}+{{b}^{3}}\) bằng
lượt xem
lượt xem
lượt xem
lượt xem
Gọi \(S\) là tập chứa tất cả các giá trị nguyên của tham số m để bất phương trình \(\log \left( 60{{x}^{2}}+120x+10m-10 \right)>1+3\log \left( x+1 \right)\) có miền nghiệm chứa đúng 4 giá trị nguyên của biến \(x\). Số phần tử của S là
lượt xem
lượt xem
lượt xem
lượt xem
lượt xem
Cho A là tập các số tự nhiên có 7 chữ số. Lấy một số bất kỳ của tập A .Tính xác suất để lấy được số lẻ và chia hết cho 9.
lượt xem
Cho hàm số bậc ba \(y=f(x)\) và có đồ thị là đường cong như trong hình vẽ. Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số \(g(x)=\left| f(2\sin x)-1 \right|\). Tổng M+m bằng
.jpg.png)
lượt xem
lượt xem
Có bao nhiêu số phức z thỏa mãn \(\left| z-3i \right|=\left| 1-i.\overline{z} \right|\) và \(z-\frac{9}{z}\) là số thuần ảo?
lượt xem
lượt xem
lượt xem
lượt xem
Cho hình chóp S.ABCD có đáy ABCD là hình vuông, \(AC=\frac{a\sqrt{2}}{2}\). Cạnh bên SA vuông góc với mặt phẳng đáy và đường thẳng SB tạo với mặt phẳng \((ABC\text{D})\) một góc \(60{}^\circ \). Khoảng cách giữa hai đường thẳng AD và SC bằng
lượt xem
Cho hình nón đỉnh S, đáy là đường tròn nội tiếp tam giác ABC. Biết rằng \(AB=BC=10a,\,AC=12a\), góc tạo bởi hai mặt phẳng \(\left( SAB \right)\) và \(\left( ABC \right)\) bằng \(45{}^\circ \). Tính thể tích V của khối nón đã cho.
lượt xem
Gọi F(x) là nguyên hàm trên \(\mathbb{R}\) của hàm số \(f\left( x \right)={{x}^{2}}{{e}^{ax}}\left( a\ne 0 \right),\) sao cho \(F\left( \frac{1}{a} \right)=F\left( 0 \right)+1.\) Chọn mệnh đề đúng trong các mệnh đề sau:
lượt xem
lượt xem
Cho hàm số \(f\left( x \right)\) có đạo hàm \({f}'\left( x \right)=\left( {{x}^{2}}+x \right){{\left( x-2 \right)}^{2}}\left( {{2}^{x}}-4 \right),\forall x\in \mathbb{R}.\) Số điểm cực trị của \(f\left( x \right)\) là
lượt xem
Cho hàm số \(f(x)=a{{x}^{3}}+b{{x}^{2}}+cx+d\text{ }(a,b,c,d\in \mathbb{R})\). Đồ thị của hàm số \(y=f(x)\) như hình vẽ bên. Số nghiệm thực của phương trình \(2\left| f(x) \right|-3=0\) là
.jpg.png)
lượt xem
Trong không gian Oxyz, phương trình mặt cầu (S) có tâm \(I\left( 0;1;-1 \right)\) và tiếp xúc với mặt phẳng \(\left( P \right):2x-y+2z-3=0\) là
lượt xem
lượt xem
Tính đạo hàm của hàm số \(y={{\log }_{\frac{3}{4}}}\left| x \right|\).
lượt xem
lượt xem
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a. Cạnh SA=a và vuông góc với mặt phẳng đáy. Góc giữa hai mặt phẳng (SBC) và \((ABC\text{D})\) bằng
lượt xem
Trong không gian Oxyz, cho hai vectơ \(\overrightarrow{u}=(3;-4;5)\) và \(\overrightarrow{v}=(2m-n;1-n;m+1)\), với m, n là các tham số thực. Biết rằng \(\overrightarrow{u}=\overrightarrow{v}\) tính \(m+n\).
lượt xem
Cho hàm số \(y=f(x)\) có bảng biến thiên như sau
.png)
Tổng số tiệm cận ngang và tiệm cận đứng của đồ thị hàm số đã cho là
lượt xem
Cho hình lăng trụ tam giác đều \(ABC.{A}'{B}'{C}'\) có \(AB=a,\) góc giữa đường thẳng \({A}'C\) và mặt phẳng \(\left( ABC \right)\) bằng 45°. Thể tích của khối lăng trụ \(ABC.{A}'{B}'{C}'\) bằng
lượt xem
Tích phân \(I=\int\limits_{0}^{1}{{{e}^{x+1}}}dx\) bằng
lượt xem
Tính thể tích của khối lập phương \(ABC\text{D}.{A}'{B}'{C}'{D}'\), biết \(A{C}'=2\text{a}\sqrt{3}\).
lượt xem
Đồ thị của hàm số nào dưới đây có dạng như đường cong trong hình vẽ?
.jpg.png)
lượt xem
Trong mặt phẳng Oxy, cho hai điểm A, B như hình vẽ dưới đây. Trung điểm của đoạn thẳng AB biểu diễn số phức?
.jpg.png)
lượt xem
Kí hiệu \({{z}_{1}},\text{ }{{\text{z}}_{2}}\) là hai nghiệm phức của phương trình \({{z}^{2}}+(1-2i)z-1-i=0\). Giá trị của \(\left| {{z}_{1}} \right|+\left| {{z}_{2}} \right|\) bằng
lượt xem
Cho hàm số f(x) liên tục trên ℝ. Gọi S là diện tích hình phẳng giới hạn bởi các đường \(y=f(x)\), \(y=0,\text{ }x=0\) và \(x=4\) (như hình vẽ). Mệnh đề nào dưới đây là đúng?
.jpg.png)
lượt xem
Cho cấp số nhân \(({{u}_{n}})\) với \({{u}_{1}}=2,\text{ }q=4\). Tổng của 5 số hạng đầu tiên bằng
lượt xem
Rút gọn biểu thức \(P={{x}^{\frac{1}{2}}}.\sqrt[4]{x}\) với x> 0
lượt xem
Từ các chữ số 1, 2, 3, 4, 6, 7 lập được bao nhiêu số tự nhiên gồm ba chữ số khác nhau?
lượt xem
Cho hàm số \(y=f\left( x \right)\) liên tục trên \(\left[ -3;3 \right]\) và có bảng xét dấu đạo hàm như hình bên.
.png)
Mệnh đề nào sau đây sai về hàm số đó?
lượt xem
Họ tất cả các nguyên hàm của hàm số \(f(x)=\sin 5\text{x}\) là
lượt xem
.jpg.png)
.jpg.png)
.jpg.png)