Cho hàm số \(y = f\left( x \right) = \left\{ {\begin{array}{*{20}{l}} {{x^2} - 2mx + 3\,\,\,\left( {x \le 1} \right)}\\ {nx + 10\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( {x > 1} \right)} \end{array}} \right.\), trong đó m,n là hai tham số thực. Hỏi có tất cả bao nhiêu giá trị nguyên của tham số m để hàm số \(y=f\left( x \right)\) có đúng hai điểm cực trị?
A. 4
B. 3
C. 2
D. Vô số
Lời giải của giáo viên
ToanVN.com
TH1. Khi \(x>1\) hàm số là nhị thức bậc nhất và không có cực trị
TH2. Khi \(x<1\) hàm số có tối đa 1 điểm cực trị (cụ thể là điểm cực tiểu tại \(x=m\))
TH3. Khi \(x=1\) hàm số có thể có 1 điểm cực trị
TH4. Hình minh họa:
.jpg.png)
Suy ra hàm số phải liên tục tại điểm \(x=1\), đạt cực trị tại \(x=m<1\), hệ số góc \(n<0\)
Suy ra: \(\left\{ {\begin{array}{*{20}{l}} {m < 1}\\ {\mathop {\lim }\limits_{x \to {1^ + }} f\left( x \right) = f\left( 1 \right)}\\ {n < 0} \end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{l}} {m < 1}\\ {n + 10 = 4 - 2m}\\ {n < 0} \end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}} {m < 1}\\ {n = - 6 - 2m < 0}\\ {n < 0} \end{array}} \right.} \right.\left\{ {\begin{array}{*{20}{l}} {n < 0}\\ { - 3 < m < 1} \end{array}} \right.\)
Suy ra các giá trị nguyên của \(m\) thỏa mãn là \(m=\left\{ -2;-1;0 \right\}\). Có 3 giá trị nguyên thỏa mãn
CÂU HỎI CÙNG CHỦ ĐỀ
Có bao nhiêu số phức z thỏa mãn \(\left| z-3i \right|=\left| 1-i.\overline{z} \right|\) và \(z-\frac{9}{z}\) là số thuần ảo?
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a. Cạnh SA=a và vuông góc với mặt phẳng đáy. Góc giữa hai mặt phẳng (SBC) và \((ABC\text{D})\) bằng
Cho hàm số \(y=\frac{2x-1}{x-1}\) có đồ thị \(\left( C \right)\). Điểm \(M\left( a,b \right)\left( a>0 \right)\) thuộc \(\left( C \right)\) sao cho khoảng cách từ M tới tiệm cận đứng của \(\left( C \right)\) bằng khoảng cách M tới tiệm cận ngang của \(\left( C \right)\). Mệnh đề nào dưới đây đúng?
Cho hàm số bậc ba \(y=f(x)\) và có đồ thị là đường cong như trong hình vẽ. Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số \(g(x)=\left| f(2\sin x)-1 \right|\). Tổng M+m bằng
.jpg.png)
Cho các số thực a,b>1 thỏa mãn \({{a}^{{{\log }_{b}}a}}+{{16}^{{{\log }_{a}}\left( \frac{{{b}^{8}}}{{{a}^{3}}} \right)}}=12{{b}^{2}}.\) Giá trị của \({{a}^{3}}+{{b}^{3}}\) bằng
Họ tất cả các nguyên hàm của hàm số \(f(x)=\sin 5\text{x}\) là
Đồ thị của hàm số nào dưới đây có dạng như đường cong trong hình vẽ?
.jpg.png)
Cho hình chóp S.ABCD có đáy ABCD là hình vuông, \(AC=\frac{a\sqrt{2}}{2}\). Cạnh bên SA vuông góc với mặt phẳng đáy và đường thẳng SB tạo với mặt phẳng \((ABC\text{D})\) một góc \(60{}^\circ \). Khoảng cách giữa hai đường thẳng AD và SC bằng
Cho hàm số \(y=f(x)\) có đạo hàm tại \(x=1\) và \({f}'(1)\ne 0\). Gọi \({{d}_{1}},\text{ }{{\text{d}}_{2}}\) lần lượt là hai tiếp tuyến của đồ thị hàm số \(y=f(x)\) và \(y=g(x)=x.f(2\text{x}-1)\) tại điểm có hoành độ \(x=1\). Biết rằng hai đường thẳng \({{d}_{1}},\text{ }{{\text{d}}_{2}}\) vuông góc với nhau. Khẳng định nào sau đây đúng?
Trong không gian với hệ tọa độ Oxyz, cho đường thẳng \(d:\left\{ \begin{align} & 1\text{x}=2+2t \\ & y=-1-3t \\ & z=1 \\ \end{align} \right.(t\in \mathbb{R})\). Xét đường thẳng \(\Delta :\frac{x-1}{1}=\frac{y-3}{m}=\frac{z+2}{-2}\), với m là tham số thực khác 0. Tìm tất cả các giá trị thực của m để đường thẳng Δ vuông góc với đường thẳng d.
Cho hàm số f(x) có đạo hàm trên đoạn \(\left[ 0;2 \right]\) và \(f(0)=-1;\text{ }f(2)=2\). Tích phân \(\int\limits_{0}^{2}{{f}'(x)d\text{x}}\) bằng
Cho hàm số \(y=f(x)\) có bảng biến thiên như sau
.png)
Tổng số tiệm cận ngang và tiệm cận đứng của đồ thị hàm số đã cho là
Trong mặt phẳng Oxy, cho hai điểm A, B như hình vẽ dưới đây. Trung điểm của đoạn thẳng AB biểu diễn số phức?
.jpg.png)
Trong không gian Oxyz, cho đường thẳng \(\Delta \) đi qua điểm \(M\left( 2;0;-1 \right)\) và có vectơ chỉ phương \(\overrightarrow{a}=\left( 4;-6;2 \right)\). Phương trình tham số của \(\Delta \) là


