Cho khối chóp S.ABC có đáy là tam giác đều cạnh bằng \(a,SA = a\sqrt 3 ,\) cạnh bên SA vuông góc với đáy. Thể tích khối chóp S.ABC bằng
lượt xem
Công thức nguyên hàm nào sau đây không đúng?
lượt xem
Tập xác định của hàm số \(y = {\left( {{x^2} - 3x + 2} \right)^\pi }\) là
lượt xem
Thể tích khối hộp chữ nhật có các kích thước là a, 2a, 3a.
lượt xem
Phương trình \({3^{x - 4}} = 1\) có nghiệm là
lượt xem
Cho (un) là cấp số cộng với công sai d. Biết \({u_5} = 16,{u_7} = 22.\) Tính u1.
lượt xem
Có bao nhiêu cách xếp một nhóm 7 học sinh thành một hàng ngang?
lượt xem
Tìm tất cả các giá trị thực của tham số a > 0 thỏa mãn \({\left( {{2^a} + \frac{1}{{{2^a}}}} \right)^{2017}} \le {\left( {{2^{2017}} + \frac{1}{{{2^{2017}}}}} \right)^a}.\)
lượt xem
lượt xem
Gọi S là tập hợp tất cả các giá trị của tham số thực m sao cho giá trị lớn nhất của hàm số \(y = \left| {3{x^2} - 6x + 2m - 1} \right|\) trên đoạn [-2;3] đạt giá trị nhỏ nhất. Số phần tử của tập S là
lượt xem
Cho các số thực a, b thỏa mãn điều kiện 0 < b < a < 1. Tìm giá trị nhỏ nhất của biểu thức \(P = {\log _a}\frac{{4\left( {3b - 1} \right)}}{9} + 8\log _{\frac{b}{a}}^2a - 1\).
lượt xem
Cho hàm số y= f(x) liên tục trên R và có bảng biến thiên như sau
Biết f(0) < 0, hỏi phương trình f(|x|) = f(0) có bao nhiêu nghiệm?
lượt xem
lượt xem
Một hình trụ có bán kính đáy bằng a, mặt phẳng qua trục cắt hình trụ theo một thiết diện có diện tích bằng 8a2. Tính diện tích xung quanh của hình trụ.
lượt xem
Cho hàm số y = f(x) liên tục trên R và có bảng biến thiên như hình vẽ. Tìm tất cả các giá trị thực của m để phương trình \(\frac{1}{2}f\left( x \right) - m = 0\) có đúng hai nghiệm phân biệt.
lượt xem
lượt xem
Có bao nhiêu giá trị nguyên của tham số m để hàm số \(y = \frac{{mx + 10}}{{2x + m}}\) nghịch biến trên (0;2)?
lượt xem
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, cạnh bên \(SA \bot \left( {ABCD} \right)\) và \(SA = a\sqrt 3 \). Khoảng cách từ A đến mặt phẳng (SBC) bằng
lượt xem
Xếp ngẫu nhiên 10 học sinh gồm 2 học sinh lớp 12A, 3 học sinh lớp 12B và 5 học sinh lớp 12C trên một bàn tròn. Tính xác suất P để các học sinh cùng lớp luôn ngồi cạnh nhau.
lượt xem
Trong không gian Oxyz, cho hai điểm A(1;2;3) và B(2;4;-1). Phương trình chính tắc của đường thẳng d đi qua A, B là
lượt xem
Trong không gian với hệ trục tọa độ Oxyz, cho đường thẳng \(d:\frac{{x - 1}}{1} = \frac{{y + 2}}{{ - 1}} = \frac{z}{2}\). Mặt phẳng (P) đi qua điểm M(2;0;-1) và vuông góc với d có phương trình là
lượt xem
Gọi z1 là nghiệm phức có phần ảo âm của phương trình \({z^2} + 2z + 3 = 0\). Trên mặt phẳng tọa độ, điểm nào sau đây là điểm biểu diễn số phức z1?
lượt xem
Cho hai số phức z = a + bi và z' = a' + b'i. Số phức \(\frac{z}{{z'}}\) có phần thực là
lượt xem
Diện tích hình phẳng được giới hạn bởi đồ thị hàm số \(y = x{e^x}\), trục hoành, hai đường thẳng x = - 2; x = 3 có công thức tính là
lượt xem
Cho tích phân \(I = \int\limits_1^e {\frac{{\sqrt {1 + \ln x} }}{x}dx} \). Đổi biến \(t = \sqrt {1 + \ln x} \) ta được kết quả nào sau đây?
lượt xem
Tính thể tích khối tròn xoay sinh ra khi quay tam giác đều ABC cạnh bằng 1 quanh AB.
lượt xem
Tập nghiệm của bất phương trình \({\log _{\frac{1}{3}}}\left( {x + 1} \right) > {\log _3}\left( {2 - x} \right)\) là \(S = \left( {a;b} \right) \cup \left( {c;d} \right)\) với a, b, c, d là các số thực. Khi đó a + b + c + d bằng:
lượt xem
Số giao điểm của đồ thị hàm số \(y = {x^2}\left| {{x^2} - 4} \right|\) với đường thẳng y = 3 là
lượt xem
Cho 0 < b < a < 1, mệnh đề nào dưới đây đúng?
lượt xem
Tổng giá trị lớn nhất và giá trị nhỏ nhất của hàm số \(y = \sqrt {2 - {x^2}} - x\) bằng
lượt xem
Cho hàm số f(x) có đạo hàm \(f'\left( x \right) = \left( {x - 1} \right){\left( {x - 2} \right)^2}{\left( {x - 3} \right)^3}{\left( {x - 4} \right)^4},\forall x \in R\). Số điểm cực trị của hàm số đã cho là
lượt xem
Cho hình lập phương ABCD.A'B'C'D'. Góc giữa hai đường thẳng B'A và CD bằng
lượt xem
Trong không gian Oxyz, cho đường thẳng \(d:\frac{{x - 1}}{2} = \frac{{y - 2}}{1} = \frac{z}{{ - 2}}\). Điểm nào dưới đây thuộc đường thẳng d?
lượt xem
Trong không gian Oxyz, cho mặt phẳng \(\left( P \right):x + y - 2z + 4 = 0\). Một vec-tơ pháp tuyến của mặt phẳng (P) là
lượt xem
Trong không gian Oxyz, cho \(A\left( { - 2;1;1} \right),{\rm{ }}B\left( {0; - 1;1} \right)\). Phương trình mặt cầu đường kính AB là
lượt xem
Trong không gian tọa độ Oxyz, tọa độ điểm G' đối xứng với điểm G(5;-3;7) qua trục Oy là
lượt xem
Trên mặt phẳng tọa độ Oxy cho điểm M trong hình vẽ bên là điểm biểu diễn của số phức z. Tìm z.
.png)
lượt xem
Cho hai số phức \({z_1} = 1 + 2i,{\rm{ }}{z_2} = 3 - i\). Tìm số phức \(z = \frac{{{z_2}}}{{{z_1}}}\).
lượt xem
Tìm phần thực và phần ảo của số phức liên hợp của số phức z = 1 + i.
lượt xem
Nếu \(\int\limits_1^5 {\frac{{dx}}{{2x - 1}} = \ln c} \) với \(c \in Q\) thì giá trị của c bằng
lượt xem
Cho hàm số f(x) có đồ thị như hình vẽ. Số nghiệm của phương trình \(2f\left( x \right) - 3 = 0\) là
.png)
lượt xem
Tập nghiệm của bất phương trình \({3^{2x - 1}} > 27\) là
lượt xem
Tìm đường tiệm cận ngang của đồ thị hàm số \(y = \frac{{2 - 2x}}{{x + 1}}\)
lượt xem
Đường cong ở hình vẽ bên là đồ thị của hàm số nào dưới đây
.png)
lượt xem
Cho hàm số y = f(x) xác định, liên tục trên R và có bảng biến thiên như sau:
.png)
Tìm giá trị cực đại yCĐ và giá trị cực tiểu yCT của hàm số đã cho
lượt xem
Một hình trụ có diện tích xung quanh bằng S, diện tích đáy bằng diện tích một mặt cầu có bán kính a. Khi đó thể tích của hình trụ bằng
lượt xem
Cho các số thực dương a, b thỏa mãn \(\log a = x,\log b = y\). Tính \(P = \log \left( {{a^2}{b^3}} \right)\).
lượt xem
Cho hàm số y = f(x) có bảng biến thiên dưới đây. Khẳng định nào sau đây sai?
.png)
lượt xem
Khối cầu có bán kính R = 6 có thể tích bằng bao nhiêu?
lượt xem
Cho khối nón tròn xoay có bán kính đáy \(r = \sqrt 3 \) và chiều cao h = 4. Tính thể tích V của khối nón đã cho.
lượt xem