Lời giải của giáo viên
ToanVN.com
Xét hàm \(f\left( x \right) = \frac{{\ln \left( {{2^x} + {2^{ - x}}} \right)}}{x} \Rightarrow f'\left( x \right) = \frac{{\left( {{2^x} - {2^{ - x}}} \right)\ln {2^x} - \left( {{2^x} + {2^{ - x}}} \right)\ln \left( {{2^x} + {2^{ - x}}} \right)}}{{{x^2}\left( {{2^x} + {2^{ - x}}} \right)}}\).
Vì \(\ln {2^x} < \ln \left( {{2^x} + {2^{ - x}}} \right)\) và \(0 < {2^x} - {2^{ - x}} < {2^x} + {2^{ - x}}\) nên \(f'\left( x \right) < 0 \Rightarrow f\left( x \right)\) nghịch biến.
Do vậy
\(\begin{array}{l} {\left( {{2^a} + \frac{1}{{{2^a}}}} \right)^{2017}} \le {\left( {{2^{2017}} + \frac{1}{{{2^{2017}}}}} \right)^a}\\ \Leftrightarrow 2017\ln \left( {{2^a} + {2^{ - a}}} \right) \le a\ln \left( {{2^{2017}} + {2^{ - 2017}}} \right)\\ \Leftrightarrow \frac{{\ln \left( {{2^a} + {2^{ - a}}} \right)}}{a} \le \frac{{\ln \left( {{2^{2017}} + {2^{ - 2017}}} \right)}}{{2017}}\\ \Leftrightarrow a \ge 2017 \end{array}\)
CÂU HỎI CÙNG CHỦ ĐỀ
Cho hai số phức \({z_1} = 1 + 2i,{\rm{ }}{z_2} = 3 - i\). Tìm số phức \(z = \frac{{{z_2}}}{{{z_1}}}\).
Cho hình hộp chữ nhật ABCD.A'B'C'D'. Gọi M là trung điểm của BB'. Mặt phẳng (MDC') chia khối hộp chữ nhật thành hai khối đa diện, một khối chứa đỉnh C và một khối chứa đỉnh A'. Gọi V1, V2 lần lượt là thể tích của hai khối đa diện chứa C và A'. Tính \(\frac{{{V_1}}}{{{V_2}}}.\)
Một hình trụ có bán kính đáy bằng a, mặt phẳng qua trục cắt hình trụ theo một thiết diện có diện tích bằng 8a2. Tính diện tích xung quanh của hình trụ.
Trong không gian tọa độ Oxyz, tọa độ điểm G' đối xứng với điểm G(5;-3;7) qua trục Oy là
Cho hàm số y= f(x) liên tục trên R và có bảng biến thiên như sau
Biết f(0) < 0, hỏi phương trình f(|x|) = f(0) có bao nhiêu nghiệm?
Trong không gian Oxyz, cho mặt phẳng \(\left( P \right):x + y - 2z + 4 = 0\). Một vec-tơ pháp tuyến của mặt phẳng (P) là
Tập nghiệm của bất phương trình \({\log _{\frac{1}{3}}}\left( {x + 1} \right) > {\log _3}\left( {2 - x} \right)\) là \(S = \left( {a;b} \right) \cup \left( {c;d} \right)\) với a, b, c, d là các số thực. Khi đó a + b + c + d bằng:
Tìm tập xác định của hàm số \(y = {\log _{\frac{1}{2}}}\left( {{x^2} - 3x + 2} \right)\)
Số giao điểm của đồ thị hàm số \(y = {x^2}\left| {{x^2} - 4} \right|\) với đường thẳng y = 3 là
Cho các số thực a, b thỏa mãn điều kiện 0 < b < a < 1. Tìm giá trị nhỏ nhất của biểu thức \(P = {\log _a}\frac{{4\left( {3b - 1} \right)}}{9} + 8\log _{\frac{b}{a}}^2a - 1\).
Cho hàm số y = f(x) liên tục trên R và có bảng biến thiên như hình vẽ. Tìm tất cả các giá trị thực của m để phương trình \(\frac{1}{2}f\left( x \right) - m = 0\) có đúng hai nghiệm phân biệt.
Hình lập phương có đường chéo của mặt bên bằng 4 cm. Tính thể tích khối lập phương đó.
Tổng giá trị lớn nhất và giá trị nhỏ nhất của hàm số \(y = \sqrt {2 - {x^2}} - x\) bằng
Xếp ngẫu nhiên 10 học sinh gồm 2 học sinh lớp 12A, 3 học sinh lớp 12B và 5 học sinh lớp 12C trên một bàn tròn. Tính xác suất P để các học sinh cùng lớp luôn ngồi cạnh nhau.
Trong không gian Oxyz, cho hai điểm A(1;2;3) và B(2;4;-1). Phương trình chính tắc của đường thẳng d đi qua A, B là


