Cho hình phẳng (D) được giới hạn bởi các đường \(x = 0,x = 1,y = 0\) và \(y = \sqrt {2x + 1} \). Thể tích V của khối tròn xoay tạo thành khi quay (D) xung quanh trục Ox được tính theo công thức
lượt xem
Cho hàm số xác định \(y = f\left( x \right)\) liên tục trên \(\left[ { - 2;3} \right]\) và có bảng xét dấu đạo hàm như hình bên. Mệnh đề nào sau đây đúng về hàm số đã cho?
.png)
lượt xem
Trong không gian Oxyz, cho điểm M(1;2;3). Hình chiếu của M lên trục Oy là điểm
lượt xem
Phương trình \(ln\left( {{x^2} + 1} \right).\ln \left( {{x^2} - 2018} \right) = 0\) có bao nhiêu nghiệm?
lượt xem
Trong mặt phẳng Oxy, cho các điểm A, B như hình vẽ bên. Trung điểm của đoạn thẳng AB biểu diễn số phức:
.png)
lượt xem
Trong không gian Oxyz, một véctơ chỉ phương của đường thẳng \(\Delta :\left\{ \begin{array}{l} x = 2t\\ y = - 1 + t\\ z = 1 \end{array} \right.\) là:
lượt xem
Tất cả các nguyên hàm của hàm số \(f\left( x \right) = c{\rm{os}}2x\) là
lượt xem
lượt xem
lượt xem
lượt xem
lượt xem
lượt xem
lượt xem
Tìm các giá trị thực của tham số m để bất phương trình \({\log _{0,02}}\left( {{{\log }_2}\left( {{3^x} + 1} \right)} \right) > {\log _{0,02}}m\) có nghiệm với mọi \(x \in \left( { - \infty ;0} \right)\)
lượt xem
lượt xem
Có bao nhiêu giá tri thực của tham số m để đồ thị hàm số \(y = {x^4} - 2m{x^2} + m - 1\) có ba điểm cực trị tạo thành một tam giác có bán kính đường tròn ngoại tiếp chúng bằng 1?
lượt xem
Tìm tất cả các giá trị thực của tham số k để có \(\int\limits_1^k {\left( {2x - 1} \right)dx} = 4\mathop {\lim }\limits_{x \to 0} \frac{{\sqrt {x + 1} - 1}}{x}\)
lượt xem
lượt xem
Gọi M và m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số \(y = \frac{{\sqrt {{x^2} - 1} }}{{x - 2}}\) trên tập \(D = \left( { - \infty ; - 1} \right] \cup \left[ {1;\frac{3}{2}} \right]\). Tính giá trị T của m.M
lượt xem
Tìm tất cả các giá trị thực của tham số m để hàm số đồng \(y = {\sin ^3}x - 3{\cos ^2}x - m\sin x - 1\) biến trên đoạn \(\left[ {0;\frac{\pi }{2}} \right]\)
lượt xem
Tính diện tích S của hình phẳng (H) giới hạn bởi đường cong \(y = - {x^3} + 12x\) và \(y = - {x^2}\)
lượt xem
Gọi x, y là các số thực dương thỏa mãn điều kiện \({\log _9}x = {\log _6}y = {\log _4}\left( {x + y} \right)\) và \(\frac{x}{y} = \frac{{ - a + \sqrt b }}{2}\), với a, b là hai số nguyên dương. Tính \(a + b\)
lượt xem
lượt xem
Cho hàm số \(f\left( x \right)\) liên tục trên \(\mathbb{R}\) và có \(\int\limits_0^1 {f\left( x \right)dx} = 2;\,\,\int\limits_0^3 {f\left( x \right)dx} = 6\). Tính \(I = \int\limits_{ - 1}^1 {f\left( {\left| {2x - 1} \right|} \right)dx} \)
lượt xem
Có bao nhiêu giá trị nguyên của m để hàm số \(f\left( x \right) = 2{x^3} - 6{x^2} - m + 1\) có các giá trị cực trị trái dấu?
lượt xem
Cho hình lăng trụ tam giác đều ABC.A’B’C’ có các cạnh đều bằng a. Tính diện tích S của mặt cầu đi qua 6 đỉnh của hình lăng trụ đó.
lượt xem
Cho hàm số \(f\left( x \right) = {5^x}{.8^{2{x^3}}}\). Khẳng định nào sau đây là khẳng định sai?
lượt xem
lượt xem
lượt xem
Cho hàm số \(f\left( x \right) = {x^3} - 6{x^2} + 9x + 1\) có đồ thị (C). Có bao nhiêu tiếp tuyến của đồ thị (C) tại điểm thuộc đồ thị (C) có hoành độ là nghiệm phương trình \(2f'\left( x \right) - x.f''\left( x \right) - 6 = 0\)
lượt xem
lượt xem
lượt xem
Đồ thị hàm số \(f\left( x \right) = \frac{1}{{\sqrt {{x^2} - 4x} - \sqrt {{x^2} - 3x} }}\) có bao nhiêu đường tiệm cận ngang ?
lượt xem
Trong không gian với hệ trục tọa độ Oxyz, cho ba điểm \(A\left( {1;2; - 4} \right),\,\,B\left( {1; - 3;1} \right),\,\,C\left( {2;2;3} \right)\). Tính đường kính l của mặt cầu (S) đi qua ba điểm trên và có tâm nằm trên mặt phẳng (Oxy)
lượt xem
Cho cấp số cộng \(\left( {{u_n}} \right)\) và gọi \({S_n}\) là tổng n số hạng đầu tiên của nó. Biết \({S_7} = 77\) và \({S_{12}} = 192\). Tìm số hạng tổng quát \({u_n}\) của cấp số cộng đó
lượt xem
Biết đường thẳng \(y = - \frac{9}{4}x - \frac{1}{{24}}\) cắt đồ thị hàm số \(y = \frac{{{x^3}}}{3} + \frac{{{x^2}}}{2} - 2x\) tại một điểm duy nhất; ký hiệu \(\left( {{x_0};{y_0}} \right)\) là tọa độ điểm đó. Tìm \({y_0}\)
lượt xem
Cho hàm số \(f\left( x \right) = \left\{ \begin{array}{l}\frac{{3 - {x^2}}}{2} & khi\,\,x < 1\\\frac{1}{x} & khi\,\,x \ge 1\end{array} \right.\). Khẳng định nào dưới đây là sai?
lượt xem
Cho hình lăng trụ ABC.A’B’C’ có đáy ABC là tam giác đều cạnh a, \(AA' = \frac{{3a}}{2}\). Biết rằng hình chiếu vuông góc của A' lên (ABC) là trung điểm BC . Tính thể tích V của khối lăng trụ đó
lượt xem
Cho hai hàm số \(F\left( x \right) = \left( {{x^2} + ax + b} \right){e^{ - x}}\) và \(f\left( x \right) = \left( { - {x^2} + 3x + 6} \right){e^{ - x}}\). Tìm a và b để \(F\left( x \right)\) là một nguyên hàm của hàm số \(f\left( x \right)\)
lượt xem
Tìm số hạng không chứa x trong khai triển của \({\left( {x\sqrt x + \frac{1}{{{x^4}}}} \right)^n}\), với \(x > 0\), nếu biết rằng \(C_n^2 - C_n^1 = 44\)
lượt xem
lượt xem
Cho hàm số \(y = f\left( x \right)\) xác định, liên tục trên \(\mathbb{R}\backslash \left\{ 1 \right\}\) và có bảng biến thiên như sau:
Tìm điều kiện của m để phương trình \(f\left( x \right) = m\) có 3 nghiệm phân biệt.
lượt xem
Cho hàm số \(f\left( x \right) = \left\{ \begin{array}{l}\frac{{{e^{ax}} - 1}}{x} & khi\,\,x \ne 0\\\frac{1}{2} & khi\,\,x = 0\end{array} \right.\) . Tìm giá trị của a để hàm số liên tục tại \({x_0} = 0\)
lượt xem
Cho hàm số \(f\left( x \right) = {\ln ^2}\left( {{x^2} - 2x + 4} \right)\). Tìm các giá trị của x để \(f'\left( x \right) > 0\)
lượt xem
lượt xem
Đồ thị hàm số \(y = {x^3} - 3{x^2} + 2ax + b\) có điểm cực tiểu \(A\left( {2; - 2} \right)\). Khi đó \(a + b = ?\)
lượt xem
lượt xem
Tính tổng S các nghiệm của phương trình \(\left( {2\cos 2x + 5} \right)\left( {{{\sin }^4}x - {{\cos }^4}x} \right) + 3 = 0\) trong khoảng \(\left( {0;2\pi } \right)\)
lượt xem
Kí hiệu \({Z_0}\) là nghiệm phức có phần thực âm và phần ảo dương của phương trình \({z^2} + 2z + 10 = 0\). Trên mặt phẳng tọa độ, điểm nào dưới đây là điểm biểu diễn số phức \({\rm{w}} = {i^{2017}}{z_0}\)?
lượt xem
lượt xem
.png)
.png)