Câu hỏi Đáp án 3 năm trước 37

Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a. Hai mặt bên (SAB) và (SAD) cùng vuông góc với mặt đáy. Biết góc giữa hai mặt phẳng (SCD) và (ABCD) bằng \({45^0}\). Gọi \({V_1},\,{V_2}\) lần lượt là thể tích khối chóp S.AHK và S.ACD với H;K lần lượt là trung điểm của SC và SD . Tính độ dài đường cao của khối chóp S.ABCD và tỉ số \(k = \frac{{{V_1}}}{{{V_2}}}\)

A. \(h = a;\,\,k = \frac{1}{4}\)      

Đáp án chính xác ✅

B. \(h = a;\,\,k = \frac{1}{6}\)

C. \(h = 2a;\,\,k = \frac{1}{8}\)

D. \(h = 2a;\,\,k = \frac{1}{3}\)

Lời giải của giáo viên

verified ToanVN.com

Do (SAB) và (SAD) cùng vuông góc với mặt đáy nên \(SA \bot (ABCD)\)

Dễ thấy góc giữa hai mặt phẳng \(\left( {SCD} \right)\& \left( {ABCD} \right)\) là \(SDA = {45^0}\)

Ta có tam giác SAD là tam giác vuông cân đỉnh A. Vậy \(h = SA = a\)

Áp dụng công thức tỉ số thể tích có \(\frac{{{V_1}}}{{{V_2}}} = \frac{{SH}}{{SC}}.\frac{{SK}}{{SD}} = \frac{1}{4}\)

CÂU HỎI CÙNG CHỦ ĐỀ

Câu 1: Trắc nghiệm

Tìm tất cả các giá trị thực của tham số k để có \(\int\limits_1^k {\left( {2x - 1} \right)dx}  = 4\mathop {\lim }\limits_{x \to 0} \frac{{\sqrt {x + 1}  - 1}}{x}\)

Xem lời giải » 3 năm trước 68
Câu 2: Trắc nghiệm

Gọi x, y là các số thực dương thỏa mãn điều kiện \({\log _9}x = {\log _6}y = {\log _4}\left( {x + y} \right)\) và \(\frac{x}{y} = \frac{{ - a + \sqrt b }}{2}\), với a, b là hai số nguyên dương. Tính \(a + b\)

Xem lời giải » 3 năm trước 67
Câu 3: Trắc nghiệm

Trong mặt phẳng tọa độ Oxy, cho hai đường tròn \(\left( {C'} \right):{x^2} + {y^2} + 2\left( {m - 2} \right)y - 6x + 12 + {m^2} = 0\) và \(\left( C \right):{\left( {x + m} \right)^2} + {\left( {y - 2} \right)^2} = 5\) trong các vectơ dưới đây, vectơ nào là của phép tịnh tiến biến (C) thành (C’) ?

Xem lời giải » 3 năm trước 64
Câu 4: Trắc nghiệm

Cho hàm số \(f\left( x \right) = {5^x}{.8^{2{x^3}}}\). Khẳng định nào sau đây là khẳng định sai?

Xem lời giải » 3 năm trước 61
Câu 5: Trắc nghiệm

Cho hai hàm số \(F\left( x \right) = \left( {{x^2} + ax + b} \right){e^{ - x}}\) và \(f\left( x \right) = \left( { - {x^2} + 3x + 6} \right){e^{ - x}}\). Tìm a và b để \(F\left( x \right)\) là một nguyên hàm của hàm số \(f\left( x \right)\)

Xem lời giải » 3 năm trước 60
Câu 6: Trắc nghiệm

Đồ thị hàm số \(y = {x^3} - 3{x^2} + 2ax + b\) có điểm cực tiểu \(A\left( {2; - 2} \right)\). Khi đó \(a + b = ?\)

Xem lời giải » 3 năm trước 60
Câu 7: Trắc nghiệm

Trong không gian với hệ trục tọa độ Oxyz, cho \(\overrightarrow {OA}  = 2\overrightarrow i  + 2\overrightarrow j  + 2\overrightarrow k ,\,\,B\left( { - 2;2;0} \right)\) và \(C\left( {4;1; - 1} \right)\). Trên mặt phẳng (Oxz), điểm nào dưới đây cách đều ba điểm A, B, C.

Xem lời giải » 3 năm trước 60
Câu 8: Trắc nghiệm

Với hai số thực dương a, b tùy ý và \(\frac{{{{\log }_3}5{{\log }_5}a}}{{1 + {{\log }_3}2}} - {\log _6}b = 2\). Khẳng định nào là khẳng định đúng?

Xem lời giải » 3 năm trước 60
Câu 9: Trắc nghiệm

Cho hình chóp tam giác đều S.ABC có độ dài cạnh đáy bằng a, cạnh bên bằng \(a\sqrt 3 \). Gọi O là tâm của đáy ABC, \({d_1}\) là khoảng cách từ A đến mặt phẳng (SBC) và \({d_2}\) là khoảng cách từ O đến mặt phẳng (SBC). Tính \(d = {d_1} + {d_2}\)

Xem lời giải » 3 năm trước 59
Câu 10: Trắc nghiệm

Biết \({x_1},\,{x_2}\), là hai nghiệm của phương trình \({\log _7}\left( {\frac{{4{x^2} - 4x + 1}}{{2x}}} \right) + 4{x^2} + 1 = 6x\) và \({x_1} + 2{x_2} = \frac{1}{4}\left( {a + \sqrt b } \right)\) với a, b là hai số nguyên dương. Tính \(a + b\)

Xem lời giải » 3 năm trước 59
Câu 11: Trắc nghiệm

Biết đường thẳng \(y =  - \frac{9}{4}x - \frac{1}{{24}}\) cắt đồ thị hàm số \(y = \frac{{{x^3}}}{3} + \frac{{{x^2}}}{2} - 2x\) tại một điểm duy nhất; ký hiệu \(\left( {{x_0};{y_0}} \right)\) là tọa độ điểm đó. Tìm \({y_0}\)

Xem lời giải » 3 năm trước 59
Câu 12: Trắc nghiệm

Cho hàm số \(f\left( x \right)\) liên tục trên \(\mathbb{R}\) và có \(\int\limits_0^1 {f\left( x \right)dx}  = 2;\,\,\int\limits_0^3 {f\left( x \right)dx}  = 6\). Tính \(I = \int\limits_{ - 1}^1 {f\left( {\left| {2x - 1} \right|} \right)dx} \)

Xem lời giải » 3 năm trước 58
Câu 13: Trắc nghiệm

Tìm số hạng không chứa x trong khai triển của \({\left( {x\sqrt x  + \frac{1}{{{x^4}}}} \right)^n}\), với \(x > 0\), nếu biết rằng \(C_n^2 - C_n^1 = 44\)

Xem lời giải » 3 năm trước 58
Câu 14: Trắc nghiệm

Cho cấp số cộng \(\left( {{u_n}} \right)\) và gọi \({S_n}\) là tổng n số hạng đầu tiên của nó. Biết \({S_7} = 77\) và \({S_{12}} = 192\). Tìm số hạng tổng quát \({u_n}\) của cấp số cộng đó

Xem lời giải » 3 năm trước 58
Câu 15: Trắc nghiệm

Cho hàm số \(f\left( x \right) = {\ln ^2}\left( {{x^2} - 2x + 4} \right)\). Tìm các giá trị của x để \(f'\left( x \right) > 0\)

Xem lời giải » 3 năm trước 58

📝 Đề thi liên quan

Xem thêm »
Xem thêm »

❓ Câu hỏi mới nhất

Xem thêm »
Xem thêm »