Người thợ gia công của một cơ sở chất lượng cao X cắt một miến tôn hình tròn với bán kính 60cm thành ba miếng hình quạt bằng nhau. Sau đó người thợ ấy quấn và hàn ba miếng tôn đó để được ba cái phễu hình nón. Hỏi thể tích V của mỗi cái phễu đó bằng bao nhiêu?
.png)
A. \(V = \frac{{16000\sqrt 2 }}{3}\) lít
B. \(V = \frac{{16\sqrt 2 \pi }}{3}\) lít
C. \(V = \frac{{16000\sqrt {2\pi } }}{3}\) lít
D. \(V = \frac{{160\sqrt {2\pi } }}{3}\) lít
Lời giải của giáo viên
ToanVN.com
Đổi \(60cm = 6dm\) .
Đường sinh của hình nón tạo thành là \(l = 6dm\) .
Chu vi đường tròn đáy của hình nón tạo thành bằng \(2\pi .r = \frac{{2\pi .6}}{3} = 4\pi \,\,dm\)
Suy ra bán kính đáy của hình nón tạo thành bằng \(r = \frac{{4\pi }}{{2\pi }} = 2\,dm\)
Đường cao của khối nón tạo thành là \(h = \sqrt {{l^2} - {r^2}} = \sqrt {{6^2} - {2^2}} = 4\sqrt 2 \)
Thể tích của mỗi cái phễu là \(V = \frac{1}{3}\pi {r^2}h = \frac{1}{3}\pi {.2^2}.4\sqrt 2 = \frac{{16\sqrt 2 \pi }}{3}d{m^3} = \frac{{16\sqrt 2 \pi }}{3}\)lít
CÂU HỎI CÙNG CHỦ ĐỀ
Tìm tất cả các giá trị thực của tham số k để có \(\int\limits_1^k {\left( {2x - 1} \right)dx} = 4\mathop {\lim }\limits_{x \to 0} \frac{{\sqrt {x + 1} - 1}}{x}\)
Gọi x, y là các số thực dương thỏa mãn điều kiện \({\log _9}x = {\log _6}y = {\log _4}\left( {x + y} \right)\) và \(\frac{x}{y} = \frac{{ - a + \sqrt b }}{2}\), với a, b là hai số nguyên dương. Tính \(a + b\)
Trong mặt phẳng tọa độ Oxy, cho hai đường tròn \(\left( {C'} \right):{x^2} + {y^2} + 2\left( {m - 2} \right)y - 6x + 12 + {m^2} = 0\) và \(\left( C \right):{\left( {x + m} \right)^2} + {\left( {y - 2} \right)^2} = 5\) trong các vectơ dưới đây, vectơ nào là của phép tịnh tiến biến (C) thành (C’) ?
Cho hàm số \(f\left( x \right) = {5^x}{.8^{2{x^3}}}\). Khẳng định nào sau đây là khẳng định sai?
Cho hai hàm số \(F\left( x \right) = \left( {{x^2} + ax + b} \right){e^{ - x}}\) và \(f\left( x \right) = \left( { - {x^2} + 3x + 6} \right){e^{ - x}}\). Tìm a và b để \(F\left( x \right)\) là một nguyên hàm của hàm số \(f\left( x \right)\)
Với hai số thực dương a, b tùy ý và \(\frac{{{{\log }_3}5{{\log }_5}a}}{{1 + {{\log }_3}2}} - {\log _6}b = 2\). Khẳng định nào là khẳng định đúng?
Đồ thị hàm số \(y = {x^3} - 3{x^2} + 2ax + b\) có điểm cực tiểu \(A\left( {2; - 2} \right)\). Khi đó \(a + b = ?\)
Trong không gian với hệ trục tọa độ Oxyz, cho \(\overrightarrow {OA} = 2\overrightarrow i + 2\overrightarrow j + 2\overrightarrow k ,\,\,B\left( { - 2;2;0} \right)\) và \(C\left( {4;1; - 1} \right)\). Trên mặt phẳng (Oxz), điểm nào dưới đây cách đều ba điểm A, B, C.
Biết \({x_1},\,{x_2}\), là hai nghiệm của phương trình \({\log _7}\left( {\frac{{4{x^2} - 4x + 1}}{{2x}}} \right) + 4{x^2} + 1 = 6x\) và \({x_1} + 2{x_2} = \frac{1}{4}\left( {a + \sqrt b } \right)\) với a, b là hai số nguyên dương. Tính \(a + b\)
Cho hàm số \(f\left( x \right)\) liên tục trên \(\mathbb{R}\) và có \(\int\limits_0^1 {f\left( x \right)dx} = 2;\,\,\int\limits_0^3 {f\left( x \right)dx} = 6\). Tính \(I = \int\limits_{ - 1}^1 {f\left( {\left| {2x - 1} \right|} \right)dx} \)
Tìm các giá trị thực của tham số m để bất phương trình \({\log _{0,02}}\left( {{{\log }_2}\left( {{3^x} + 1} \right)} \right) > {\log _{0,02}}m\) có nghiệm với mọi \(x \in \left( { - \infty ;0} \right)\)
Cho hình chóp tam giác đều S.ABC có độ dài cạnh đáy bằng a, cạnh bên bằng \(a\sqrt 3 \). Gọi O là tâm của đáy ABC, \({d_1}\) là khoảng cách từ A đến mặt phẳng (SBC) và \({d_2}\) là khoảng cách từ O đến mặt phẳng (SBC). Tính \(d = {d_1} + {d_2}\)
Biết đường thẳng \(y = - \frac{9}{4}x - \frac{1}{{24}}\) cắt đồ thị hàm số \(y = \frac{{{x^3}}}{3} + \frac{{{x^2}}}{2} - 2x\) tại một điểm duy nhất; ký hiệu \(\left( {{x_0};{y_0}} \right)\) là tọa độ điểm đó. Tìm \({y_0}\)
Cho cấp số cộng \(\left( {{u_n}} \right)\) và gọi \({S_n}\) là tổng n số hạng đầu tiên của nó. Biết \({S_7} = 77\) và \({S_{12}} = 192\). Tìm số hạng tổng quát \({u_n}\) của cấp số cộng đó
Cho hàm số \(f\left( x \right) = {\ln ^2}\left( {{x^2} - 2x + 4} \right)\). Tìm các giá trị của x để \(f'\left( x \right) > 0\)


