Cho số phức z thỏa mãn \(\left| z \right| = 12\). Biết rằng tập hợp các điểm biểu diễn các số phức \(w = \left( {8 - 6i} \right)z + 2i\) là một đường tròn. Tính bán kính r của đường tròn đó.
lượt xem
Cho số phức \(z = 7 - i\sqrt 5 \). Phần thực và phần ảo của số phức \(\overline z \) lần lượt là
lượt xem
Cho hàm số \(y = f\left( x \right)\) có đạo hàm trên đoạn \(\left[ { - 2;1} \right]\) và \(f\left( { - 2} \right) = 3,\,f\left( 1 \right) = 7\). Tính \(I = \int\limits_{ - 2}^1 {f'\left( x \right)dx} \).
lượt xem
Biết \(\int\limits_1^2 {\dfrac{{xdx}}{{\left( {x + 1} \right)\left( {2x + 1} \right)}} = a\ln 2 + b\ln 3 + c\ln 5} \). Tính \(S = a + b + c\)
lượt xem
Trong không gian với hệ trục tọa độ Oxyz, mặt phẳng (P) cắt ba trục Ox, Oy, Oz lần lượt tại A, B, C; trực tâm tam giác \(ABC\) là \(H\left( {1;2;3} \right)\). Phương trình của mặt phẳng (P) là:
lượt xem
Tìm tham số m để \(\int\limits_0^1 {{e^x}\left( {x + m} \right)dx = e} \).
lượt xem
Trong không gian với hệ trục tọa độ Oxyz, cho hai điểm \(M\left( { - 2;6;1} \right),M'\left( {a;b;c} \right)\) đối xứng nhau qua mặt phẳng \(\left( {Oyz} \right)\). Tính \(S = 7a - 2b + 2017c - 1\).
lượt xem
Biết \(\int\limits_1^2 {\dfrac{{\ln x}}{{{x^2}}}dx} = \dfrac{b}{c} + a\ln 2\) (với a là số thực, b, c là các số nguyên dương và \(\dfrac{b}{c}\) là phân số tối giản). Tính giá trị của \(2a + 3b + c\).
lượt xem
Tìm nguyên hàm của hàm số \(f\left( x \right) = \sin 3x\).
lượt xem
Cho số phức \(z = - 4 - 6i\). Gọi M là điểm biểu diễn số phức \(\overline z \). Tung độ của điểm M là:
lượt xem