Đề thi chọn học sinh giỏi tỉnh Toán 12 năm 2020 sở GD&ĐT Quảng Ninh

Đề thi chọn học sinh giỏi tỉnh Toán 12 năm 2020 sở GD&ĐT Quảng Ninh (Bảng A và Bảng B) được biên soạn theo dạng đề tự luận, có lời giải chi tiết và thang điểm; kỳ thi được diễn ra vào ngày 01 tháng 12 năm 2020.
(339) 1130 08/08/2022

Đề thi chọn học sinh giỏi tỉnh Toán 12 năm 2020 sở GD&ĐT Quảng Ninh (Bảng A và Bảng B) được biên soạn theo dạng đề tự luận, có lời giải chi tiết và thang điểm; kỳ thi được diễn ra vào ngày 01 tháng 12 năm 2020.

Trích dẫn đề thi chọn học sinh giỏi tỉnh Toán 12 năm 2020 sở GD&ĐT Quảng Ninh:
+ Lớp 12B lập Kế hoạch tiết kiệm 5 triệu đồng tiền tiêu vặt trong 5 tháng để ủng hộ đồng bào bị thiên tai như sau: Vào các ngày mùng 1 của các tháng 1, 2, 3, 4, 5 của năm 2021 mỗi học sinh trong lớp tiết kiệm số tiền giống nhau là A đồng và nộp lại cho lớp trưởng để lớp trưởng gửi vào ngân hàng theo hình thức lãi kép (lãi nhập vào gốc để tính lãi ở tháng tiếp theo) với lãi suất r (r > 0) trên một tháng (lãi suất không đổi trong suốt thời gian gửi). Hãy xây dựng công thức tính A theo r biết rằng lớp có 40 học sinh và ngày rút tiền ủng hộ là ngày 01/6/2021 (chỉ rút duy nhất một lần).
+ Ở một thành phố biển Q có một hòn đảo, trên đảo có điểm O cố định. Người ta cần xây dựng các con đường nối từ hai ga xe X và Y trên đất liền tới một điểm T cách điểm O một khoảng r. Cho biết với ϕ là góc nhọn thỏa mãn. Dự kiến đường đi từ X tới T là đường thẳng hai làn xe, còn đường đi từ Y tới T là đường thẳng bốn làn xe. Chi phí xây dựng cho một ki-lô-mét đường hai làn xe và bốn làn xe lần lượt là 1 triệu USD và 2 triệu USD. Tìm vị trí điểm T sao cho tổng chi phí xây dựng cả hai con đường là nhỏ nhất và tính chi phí này.
+ Cho đa giác đều (H) có 24 đỉnh. Gọi S là tập hợp các tam giác có 3 đỉnh lấy từ 24 đỉnh của (H). Chọn ngẫu nhiên một tam giác từ S, tính xác suất để tam giác chọn được không phải là tam giác vuông.

File WORD (dành cho quý thầy, cô): TẢI XUỐNG


(339) 1130 08/08/2022