Trong không gian với hệ tọa độ Oxyz, cho điểm A(2;1;1) và hai đường thẳng \({d_1}:\left\{ \begin{array}{l} x = 3 + t\\ y = 1\\ z = 2 - t \end{array} \right.\), \({d_2}:\left\{ \begin{array}{l} x = 3 + 2t'\\ y = 3 + t'\\ z = 0 \end{array} \right.\). Phương trình đường thẳng đi qua A vuông góc với d1 và cắt d2 là
A. \(\frac{{x - 1}}{1} = \frac{{y - 2}}{{ - 1}} = \frac{z}{1}\)
B. \(\frac{{x - 2}}{1} = \frac{{y - 1}}{{ - 1}} = \frac{{z - 1}}{{ - 1}}\)
C. \(\frac{{x - 2}}{2} = \frac{{y - 1}}{1} = \frac{{z - 1}}{2}\)
D. \(\frac{{x - 1}}{2} = \frac{{y - 2}}{{ - 1}} = \frac{z}{2}.\)
Lời giải của giáo viên
ToanVN.com
Đường thẳng \({{d}_{1}}\) có VTCP \(\overrightarrow{{{u}_{{{d}_{1}}}}}=\left( 1;0;-1 \right)\).
Giả sử \(\left( P \right)\) là mặt phẳng qua A và vuông góc với \({{d}_{1}}\Rightarrow \left( P \right):x-2-z+1=0\Leftrightarrow x-z-1=0\)
Gọi B là giao điểm của \(\left( P \right)\) và \({{d}_{2}}.\) Tọa độ B là nghiệm của hệ phương trình:
\(\left\{ \begin{array}{l} x = 3 + 2t'\\ y = 3 + t'\\ z = 0\\ x - z - 1 = 0 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} t' = - 1\\ x = 1\\ y = 2\\ z = 0 \end{array} \right. \Rightarrow B\left( {1;2;0} \right)\)
Đường thẳng cần tìm là đường thẳng AB:
Ta có \(\overrightarrow{AB}=\left( -1;1;-1 \right)\) hay VTCP của đường thẳng cần tìm là \(\overrightarrow{u}=\left( 1;-1;1 \right)\)
Đường thẳng cần tìm đi qua \(B\left( 1;\,2;\,0 \right)\) và có VTCP là \(\overrightarrow{u}=\left( 1;-1;1 \right)\)
Suy ra phương trình đường thẳng cần tìm: \(\frac{x-1}{1}=\frac{y-2}{-1}=\frac{z}{1}\)
CÂU HỎI CÙNG CHỦ ĐỀ
Cho hàm số \(f\left( x \right)\) có đạo hàm \({f}'\left( x \right)={{\left( x+1 \right)}^{2}}{{\left( x-2 \right)}^{3}}\left( 2x+3 \right),\,\forall x\in \mathbb{R}\). Số điểm cực trị của hàm số đã cho là
Cho hàm số \(y=\frac{1}{2}{{x}^{2}}\) có đồ thị (P). Xét các điểm A, B thuộc (P) sao cho tiếp tuyến tại A và B vuông góc với nhau. Diện tích hình phẳng giới hạn bởi (P) và đường thẳng AB bằng \(\frac{9}{4}\). Gọi \(x_{1}^{{}},\,x_{2}^{{}}\) lần lượt là hoành độ của A và B. Giá trị của \({{(x_{1}^{{}}+\,x_{2}^{{}})}^{2}}\) bằng :
Tập hợp tất cả các số thực m để phương trình \({{\log }_{2}}x=m\) có nghiệm là
Trong không gian Oxyz, cho hai điểm \(A\left( 1;1;1 \right)\) và \(I\left( 1;2;3 \right).\) Phương trình của mặt cầu tâm I và đi qua A là
Trong không gian với hệ tọa độ Oxyz, cho mặt cầu \(\left( S \right):{{x}^{2}}+{{y}^{2}}+{{z}^{2}}-8x+10y-6z+49=0\). Tính bán kính R của mặt cầu \(\left( S \right)\).
Cho hàm số \(y=f\left( x \right)\) có đạo hàm trên \(\mathbb{R}\) và không có cực trị, đồ thị của hàm số \(y=f\left( x \right)\) là đường cong của hình vẽ bên. Xét hàm số \(h\left( x \right)=\frac{1}{2}{{\left[ f\left( x \right) \right]}^{2}}-2x.f\left( x \right)+2{{x}^{2}}\). Mệnh đề nào sau đây đúng?
.jpg.png)
Cho các số thực dương \(a,\,\,b\) thỏa mãn \(3\log a+2\log b=1\). Mệnh đề nào sau đây đúng?
Trong không gian Oxyz, cho mặt cầu \(\left( S \right)\) có tâm thuộc mặt phẳng \(\left( P \right):x+2y+z-7=0\) và đi qua hai điểm \(A\left( 1\,;\,2\,;\,1 \right), B\left( 2\,;\,5\,;\,3 \right)\). Bán kính nhỏ nhất của mặt cầu \(\left( S \right)\) bằng
Tổng giá trị lớn nhất và giá trị nhỏ nhất của hàm số \(y=-{{x}^{3}}+3x+1\) trên đoạn \(\left[ 0;2 \right]\) bằng
Giả sử \({{z}_{1}},{{z}_{2}}\) là hai trong các số phức thỏa mãn \(\left( z-6 \right)\left( 8+\overline{zi} \right)\) là số thực. Biết rằng \(\left| {{z}_{1}}-{{z}_{2}} \right|=4\), giá trị nhỏ nhất của \(\left| {{z}_{1}}+3{{z}_{2}} \right|\) bằng
Tính thể tích của khối tứ diện ABCD, biết AB,AC,AD đôi một vuông góc và lần lượt có độ dài bằng 2,3,4.
Cho hàm số y = f(x) có đồ thị như hình vẽ bên.
.jpg.png)
Hàm số đồng biến trên khoảng nào sau đây?
Số nghiệm nguyên của bất phương trình \({{2}^{{{x}^{2}}+3\text{x}}}\le 16\) là
Cho \(\int\limits_{0}^{1}{\frac{{{x}^{2}}+2x}{{{\left( x+3 \right)}^{2}}}dx}=\frac{a}{4}-4\ln \frac{4}{b}\) với \(a,\,\,b\) là các số nguyên dương. Giá trị của a+b bằng
Thể tích của khối trụ có chu vi đáy bằng \(4\pi a\) và độ dài đường cao bằng a là


