Trong không gian \(Oxyz\), đường thẳng đi qua điểm \(M\left( 1;2;2 \right)\), song song với mặt phẳng \(\left( P \right):x-y+z+3=0\) đồng thời cắt đường thẳng \(d:\frac{x-1}{1}=\frac{y-2}{1}=\frac{z-3}{1}\) có phương trình là
A.
\(\left\{ \begin{array}{l}
x = 1 - t\\
y = 2 - t\\
z = 2
\end{array} \right.\)
B.
\(\left\{ \begin{array}{l}
x = 1 - t\\
y = 2 - t\\
z = 3 - t
\end{array} \right.\)
C.
\(\left\{ \begin{array}{l}
x = 1 + t\\
y = 2 - t\\
z = 3
\end{array} \right.\)
D.
\(\left\{ \begin{array}{l}
x = 1 - t\\
y = 2 + t\\
z = 3
\end{array} \right.\)
Lời giải của giáo viên
ToanVN.com
Gọi đường thẳng cần tìm là \(\Delta \). Gọi \(I=\Delta \cap d\)\(\Rightarrow I\in d\) \(\Leftrightarrow I\left( 1+t;2+t;3+t \right)\).
\(\overrightarrow{MI}=\left( t;t;1+t \right)\) mà \(MI\text{//}\left( P \right)\) nên \(\overrightarrow{MI}.{{\vec{n}}_{\left( P \right)}}=0\) \(\Leftrightarrow t-t+\left( 1+t \right)=0\) \(\Leftrightarrow t=-1\)\(\Rightarrow \overrightarrow{MI}=\left( -1;-1;0 \right)\)
Đường thẳng \(\Delta \) đi qua \(M\left( 1;2;2 \right)\) và \(I\) có véctơ chỉ phương là \(\overrightarrow{MI}=\left( -1;-1;0 \right)\) có phương trình tham số là \(\left\{ \begin{array}{l} x = 1 - t\\ y = 2 - t\\ z = 2 \end{array} \right.\)
CÂU HỎI CÙNG CHỦ ĐỀ
Cho hàm số \(f\left( x \right)\) có đạo hàm \({f}'\left( x \right)\) liên tục trên \(\mathbb{R}\) và đồ thị của \({f}'\left( x \right)\) trên đoạn \(\left[ -2;6 \right]\) như hình bên dưới. Khẳng định nào dưới đây đúng?
Cho A là tập hợp gồm 20 điểm phân biệt. Số đoạn thẳng có hai điểm đầu mút phân biệt thuộc tập A là:
Cho hai số phức \({{z}_{1}}=1+2i\), \({{z}_{2}}=2-3i\). Xác định phần thực, phần ảo của số phức \(z={{z}_{1}}+{{z}_{2}}\).
Điểm M là biểu diễn của số phức z trong hình vẽ bên dưới. Chọn khẳng định đúng
Trong không gian \(Oxyz\), cho hai điểm \(A\left( 1;\,1;\,-1\, \right)\),\(B\left( 2;\,3;\,2 \right)\). Vectơ \(\overrightarrow{AB}\) có tọa độ là
Gọi \(M,m\) lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số \(f\left( x \right)={{x}^{3}}-3{{x}^{2}}-9x+35\) trên đoạn \(\left[ -4;4 \right]\) . Tính \(M+2m\).
Khối chóp có đáy là hình vuông cạnh \(a\) và chiều cao bằng \(4a\). Thể tích khối chóp đã cho bằng
Cho số phức \(z\) thỏa mãn \(\left( 1+2i \right)z=\left( 1+2i \right)-\left( -2+i \right)\). Mô đun của \(z\) bằng
Tính tổng \(S\) của các phần thực của tất cả các số phức \(z\) thỏa mãn điều kiện \(\bar{z}=\sqrt{3}{{z}^{2}}.\)
Hàm số \(f(x)={{x}^{4}}-2\) nghịch biến trên khoảng nào?
Đồ thị hàm số \(y=\frac{x+1}{2-x}\) có tiệm cận ngang là đường thẳng:
Có bao nhiêu số tự nhiên \(x\) không vượt quá \(2018\) thỏa mãn \({{\log }_{2}}\left( \frac{x}{4} \right)\log _{2}^{2}x\ge 0\)?
Gieo đồng tiền hai lần. Xác suất để sau hai lần gieo thì mặt sấp xuất hiện ít nhất một lần
Tìm tập nghiệm \(S\) của phương trình \({{\log }_{2}}\left( {{x}^{2}}-2 \right)+2=0\).


