Lời giải của giáo viên
ToanVN.com
Ta có \(V=\frac{1}{3}S.h=\frac{1}{3}{{a}^{2}}.4a=\frac{4}{3}{{a}^{3}}\)
CÂU HỎI CÙNG CHỦ ĐỀ
Cho hàm số \(f\left( x \right)\) có đạo hàm \({f}'\left( x \right)\) liên tục trên \(\mathbb{R}\) và đồ thị của \({f}'\left( x \right)\) trên đoạn \(\left[ -2;6 \right]\) như hình bên dưới. Khẳng định nào dưới đây đúng?
Cho A là tập hợp gồm 20 điểm phân biệt. Số đoạn thẳng có hai điểm đầu mút phân biệt thuộc tập A là:
Cho hai số phức \({{z}_{1}}=1+2i\), \({{z}_{2}}=2-3i\). Xác định phần thực, phần ảo của số phức \(z={{z}_{1}}+{{z}_{2}}\).
Điểm M là biểu diễn của số phức z trong hình vẽ bên dưới. Chọn khẳng định đúng
Trong không gian \(Oxyz\), cho hai điểm \(A\left( 1;\,1;\,-1\, \right)\),\(B\left( 2;\,3;\,2 \right)\). Vectơ \(\overrightarrow{AB}\) có tọa độ là
Gọi \(M,m\) lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số \(f\left( x \right)={{x}^{3}}-3{{x}^{2}}-9x+35\) trên đoạn \(\left[ -4;4 \right]\) . Tính \(M+2m\).
Cho số phức \(z\) thỏa mãn \(\left( 1+2i \right)z=\left( 1+2i \right)-\left( -2+i \right)\). Mô đun của \(z\) bằng
Tính tổng \(S\) của các phần thực của tất cả các số phức \(z\) thỏa mãn điều kiện \(\bar{z}=\sqrt{3}{{z}^{2}}.\)
Đồ thị hàm số \(y=\frac{x+1}{2-x}\) có tiệm cận ngang là đường thẳng:
Tìm tập nghiệm \(S\) của phương trình \({{\log }_{2}}\left( {{x}^{2}}-2 \right)+2=0\).
Gieo đồng tiền hai lần. Xác suất để sau hai lần gieo thì mặt sấp xuất hiện ít nhất một lần
Có bao nhiêu số tự nhiên \(x\) không vượt quá \(2018\) thỏa mãn \({{\log }_{2}}\left( \frac{x}{4} \right)\log _{2}^{2}x\ge 0\)?
Hàm số \(f(x)={{x}^{4}}-2\) nghịch biến trên khoảng nào?
Trong không gian với hệ trục tọa độ \(Oxyz\), cho đường thẳng \(d:\left\{ \begin{array}{l} x = 1\\ y = 2 + 3t\\ z = 5 - t \end{array} \right.\) \(\left( t\in \mathbb{R} \right)\). Vectơ chỉ phương của \(d\) là


