Trong không gian \(Oxyz,\) cho đường thẳng \(\Delta :\ \ \frac{x}{1}=\frac{y+1}{2}=\frac{z-1}{1}\) và mặt phẳng \(\left( P \right):\ x-2y-z+3=0.\) Đường thẳng nằm trong \(\left( P \right)\) đồng thời cắt và vuông góc với \(\Delta \) có phương trình là:
A. \(\left\{ \begin{align} & x=1 \\ & y=1-t \\ & z=2+2t \\\end{align} \right.\)
B. \(\left\{ \begin{align} & x=-3 \\ & y=-t \\ & z=2t \\\end{align} \right.\)
C. \(\left\{ \begin{align} & x=1+t \\ & y=1-2t \\ & z=2+3t \\\end{align} \right.\)
D. \(\left\{ \begin{align} & x=1+2t \\ & y=1-t \\ & z=2 \\\end{align} \right.\)
Lời giải của giáo viên
ToanVN.com
Ta có: \(\Delta :\ \left\{ \begin{align} & x=t \\ & y=-1+2t \\& z=1+t \\\end{align} \right.\Rightarrow \overrightarrow{{{u}_{\Delta }}}=\left( 1;\ 2;\ 1 \right)\) và đi qua \(A\left( 0;-1;\ 1 \right).\)
Gọi \(M\left( {{x}_{0}};\ {{y}_{0}};\ {{z}_{0}} \right)\) thuộc \(\Delta \Rightarrow M\left( t;\ -1+2t;\ 1+t \right).\)
\(M\) là giao điểm của \(\Delta \) và \(\left( P \right)\Rightarrow t-2\left( -1+2t \right)-\left( 1+t \right)+3=0\Leftrightarrow t=1\Rightarrow M\left( 1;\ 1;\ 2 \right).\)
Đường thẳng \(d\) cần tìm thuộc \(\left( P \right)\) và vuông góc với \(\Delta \Rightarrow \overrightarrow{{{u}_{d}}}=\left[ \overrightarrow{{{n}_{P}}},\ \overrightarrow{{{u}_{\Delta }}} \right].\)
\( \Rightarrow \overrightarrow {{u_d}} = \left( {\left| {\begin{array}{*{20}{c}}
2&1\\
{ - 2}&{ - 1}
\end{array}} \right|;\;\left| {\begin{array}{*{20}{c}}
1&1\\
{ - 1}&1
\end{array}} \right|;\;\left| {\begin{array}{*{20}{c}}
1&2\\
1&{ - 2}
\end{array}} \right|} \right) = \left( {0;\;2;\; - 4} \right) = - 2\left( {0; - 1;\;2} \right).\)
Vậy \(d:\ \ \left\{ \begin{align} & x=1 \\ & y=1-t \\ & z=2+2t \\\end{align} \right..\)
Chọn A.
CÂU HỎI CÙNG CHỦ ĐỀ
Trong không gian \(Oxyz,\) cho hai điểm \(A\left( 5;-4;\ 2 \right)\) và \(B\left( 1;\ 2;\ 4 \right).\) Mặt phẳng đi qua \(A\) và vuông góc với đường thẳng \(AB\) có phương trình là:
Trong không gian \(Oxyz,\) mặt cầu \(\left( S \right):\ {{\left( x-5 \right)}^{2}}+{{\left( y-1 \right)}^{2}}+{{\left( z+2 \right)}^{2}}=3\) có bán kính bằng:
Có bao nhiêu giá trị nguyên của tham số \(m\) để hàm số \(y={{x}^{8}}+\left( m-3 \right){{x}^{5}}-\left( {{m}^{2}}-9 \right){{x}^{4}}+1\) đạt cực tiểu tại \(x=0?\)
Cho \(\int\limits_{1}^{e}{\left( 2+x\ln x \right)dx=a{{e}^{2}}+be+c}\) với \(a,\ b,\ c\) là các số hữu tỉ. Mệnh đề nào dưới đây đúng?
Cho hình chóp \(SABC\) có đáy là tam giác vuông cân tại \(C,\ BC=a,\ SA\) vuông góc với mặt phẳng đáy và \(SA=a.\) Khoảng cách từ \(A\) đến mặt phẳng \(\left( SBC \right)\) bằng:
Cho phương trình \({{2}^{x}}+m=\log2\left( x-m \right)\) với \(m\) là tham số. Có bao nhiêu giá trị nguyên của \(m\in \left( -18;\ 18 \right)\) để phương trình đã cho có nghiệm?
Cho \(a>0,\ b>0\) thỏa mãn \({{\log }_{2a+2b+1}}\left( 4{{a}^{2}}+{{b}^{2}}+1 \right)+{{\log }_{4ab+1}}\left( 2a+2b+1 \right)=2.\) Giá trị của \(a+2b\) bằng:
Xét các số phức \(z\) thỏa mãn \(\left( \overline{z}-2i \right)\left( z+2 \right)\) là số thuần ảo. Trên mặt phẳng tọa độ, tập hợp tất cả các điểm biểu diễn các số phức \(z\) là một đường tròn có bán kính bằng:
Cho hình chóp \(SABC\) có \(SA\) vuông góc với mặt phẳng đáy, \(AB=a\) và \(SB=2a.\) Góc giữa đường thẳng \(SB\) và mặt phẳng đáy bằng:
Cho hình phẳng \(\left( H \right)\) giới hạn bởi các đường \(y={{x}^{2}}+2,\ y=0,\ x=1,\ x=2.\) Gọi \(V\) là thể tích của khối tròn xoay được tạo thành khi quay \(\left( H \right)\) xung quanh trục \(Ox.\) Mệnh đề nào dưới đây đúng?
Cho hai hàm số \(y=f\left( x \right),\ y=g\left( x \right).\) Hai hàm số \(y=f'\left( x \right)\) và \(y=g'\left( x \right)\) có đồ thị hàm như hình vẽ bên, trong đó đường cong đậm hơn là đồ thị của hàm số \(y=g'\left( x \right).\) Hàm số \(h\left( x \right)=f\left( x+6 \right)-g\left( 2x+\frac{5}{2} \right)\) đồng biến trên khoảng nào dưới đây?
Cho hàm số \(y=a{{x}^{4}}+b{{x}^{2}}+c\ \left( a,\ b,\ c\in R \right)\) có đồ thị như hình vẽ bên. Số điểm cực trị của hàm số đã cho là:
Cho khối lăng trụ có đáy là hình vuông cạnh a và chiều cao bằng 2a. Thể tích của khối lăng trụ đã cho bằng:


