Trong không gian Oxyz, cho bốn điểm \(A\left( 3;0;0 \right),\text{ }B\left( 0;2;0 \right),\text{ }C\left( 0;0;6 \right)\) và \(D\left( 1;1;1 \right).\) Gọi \(\Delta \) là đường thẳng đi qua D và thỏa mãn tổng khoảng cách từ các điểm \(A,\text{ }B,\text{ }C\) đến \(\Delta \) là lớn nhất, hỏi \(\Delta \) đi qua điểm nào trong các điểm dưới đây?
A. \(M\left( {5;7;3} \right).\)
B. \(M\left( {3;4;3} \right).\)
C. \(M\left( {7;13;5} \right).\)
D. \(M\left( { - 1; - 2;1} \right).\)
Lời giải của giáo viên
ToanVN.com
Phương trình mặt phẳng \(\left( ABC \right)\) là \(\frac{x}{3}+\frac{y}{2}+\frac{z}{6}=1\Leftrightarrow 2x+3y+z-6=0\).
Dễ thấy \(D\in \left( ABC \right)\). Gọi H,K,I lần lượt là hình chiếu của A,B,C trên \(\Delta \).
Do \(\Delta \) là đường thẳng đi qua D nên \(AH\le AD,BK\le BD,CI\le CD\).
Vậy để khoảng cách từ các điểm \(A,B,\,C\) đến \(\Delta \) là lớn nhất thì \(\Delta \) là đường thẳng đi qua D và vuông góc với \(\left( ABC \right)\). Vậy phương trình đường thẳng \(\Delta \) là \(\left\{ \begin{align} & x=1+2t \\ & y=1+3t \\ & z=1+t \\ \end{align} \right.\,\left( t\in \mathbb{R} \right)\). Kiểm tra ta thấy điểm \(M\left( 5;7;3 \right)\in \Delta .\)
CÂU HỎI CÙNG CHỦ ĐỀ
Cho hàm số \(y=f\left( x \right)\) xác định, liên tục trên \(\mathbb{R}\) và có bảng biến thên như hình bên. Tìm số nghiệm của phương trình \(3\left| f\left( x \right) \right|-7=0\).
Trong không gian với hệ trục tọa độ Oxyz, cho điểm \(I\left( 2;-2;0 \right).\) Viết phương trình mặt cầu tâm I bán kính R=4
Giả sử \(\int\limits_{0}^{9}{f\left( x \right)\text{d}x}=37\) và \(\int\limits_{9}^{0}{g\left( x \right)\text{d}x}=16\). Khi đó, \(I=\int\limits_{0}^{9}{\left[ 2f\left( x \right)+3g(x) \right]\text{d}x}\) bằng:
Đồ thị hàm số \(y=\frac{2x-3}{x-1}\) có các đường tiệm cận đứng và tiệm cận ngang lần lượt là:
Tính đạo hàm của hàm số \(y = {\log _5}\left( {{x^2} + 2} \right).\)
Cho lăng trụ tam giác đều \(ABC.{A}'{B}'{C}'\) có cạnh đáy bằng a và \(A{B}'\bot B{C}'\). Khi đó thể tích của khối lăng trụ trên sẽ là:
Giải bất phương trình \({{\log }_{2}}\left( 3x-2 \right)>{{\log }_{2}}\left( 6-5x \right)\) được tập nghiệm là \(\left( a;b \right)\) Hãy tính tổng S=a+b
Cho hàm số \(f\left( x \right)\) liên tục trên \(\mathbb{R}\) và thỏa mãn \(\int\limits_{-5}^{1}{f\left( x \right)dx}=9\). Tính tích phân \(\int\limits_{0}^{2}{\left[ f\left( 1-3x \right)+9 \right]}dx\):
Tìm n biết \(\frac{1}{{{\log }_{2}}x}+\frac{1}{{{\log }_{{{2}^{2}}}}x}+\frac{1}{{{\log }_{{{2}^{3}}}}x}+...+\frac{1}{{{\log }_{{{2}^{n}}}}x}=\frac{465}{{{\log }_{2}}x}\) luôn đúng với mọi \(x>0,x\ne 1.\)
Cho số phức z thỏa mãn: \((3+2i)z+{{(2-i)}^{2}}=4+i\). Hiệu phần thực và phần ảo của số phức z là:
Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng \(\left( P \right):x+y-2z+3=0\) và điểm \(I\left( 1;\,1;\,0 \right)\). Phương trình mặt cầu tâm I và tiếp xúc với \(\left( P \right)\) là:
Cho số phức z thoả mãn \(\left| z-3+4i \right|=2,\text{w}=2z+1-i.\) Khi đó \(\left| \text{w} \right|\) có giá trị lớn nhất là:
Cho hàm số \(y={{x}^{3}}-3{{x}^{2}}+6x+5.\) Tiếp tuyến của đồ thị hàm số có hệ số góc nhỏ nhất có phương trình là
Cho hàm số \(f\left( x \right)=a{{x}^{3}}+b{{x}^{2}}+cx+d\) có đồ thị như hình vẽ bên dưới.
Mệnh đề nào sau đây sai?


