Lời giải của giáo viên
ToanVN.com
Đặt \(\text{w}=x+yi\Rightarrow z=\frac{\text{w}-1+i}{2}=\frac{x-1+\left( y+1 \right)i}{2}.\)
\(\left| z-3+4i \right|=2\Leftrightarrow \left| \frac{\left( x-7 \right)+\left( y+9 \right)i}{2} \right|=2\Leftrightarrow \sqrt{{{\left( x-7 \right)}^{2}}+{{\left( y+9 \right)}^{2}}}=4\Leftrightarrow {{\left( x-7 \right)}^{2}}+{{\left( +9 \right)}^{2}}=16.\)
=>Tập hợp điểm biểu diễn số phức w là đường tròn tâm \(I\left( 7;-9 \right)\) bán kính R=4.
Khi đó \(\left| \text{w} \right|\) có giá trị lớn nhất là \(OI+R=4+\sqrt{130}\)
CÂU HỎI CÙNG CHỦ ĐỀ
Trong không gian với hệ trục tọa độ Oxyz, cho điểm \(I\left( 2;-2;0 \right).\) Viết phương trình mặt cầu tâm I bán kính R=4
Cho hàm số \(y=f\left( x \right)\) xác định, liên tục trên \(\mathbb{R}\) và có bảng biến thên như hình bên. Tìm số nghiệm của phương trình \(3\left| f\left( x \right) \right|-7=0\).
Giả sử \(\int\limits_{0}^{9}{f\left( x \right)\text{d}x}=37\) và \(\int\limits_{9}^{0}{g\left( x \right)\text{d}x}=16\). Khi đó, \(I=\int\limits_{0}^{9}{\left[ 2f\left( x \right)+3g(x) \right]\text{d}x}\) bằng:
Đồ thị hàm số \(y=\frac{2x-3}{x-1}\) có các đường tiệm cận đứng và tiệm cận ngang lần lượt là:
Cho lăng trụ tam giác đều \(ABC.{A}'{B}'{C}'\) có cạnh đáy bằng a và \(A{B}'\bot B{C}'\). Khi đó thể tích của khối lăng trụ trên sẽ là:
Tính đạo hàm của hàm số \(y = {\log _5}\left( {{x^2} + 2} \right).\)
Cho hàm số \(f\left( x \right)\) liên tục trên \(\mathbb{R}\) và thỏa mãn \(\int\limits_{-5}^{1}{f\left( x \right)dx}=9\). Tính tích phân \(\int\limits_{0}^{2}{\left[ f\left( 1-3x \right)+9 \right]}dx\):
Cho số phức z thỏa mãn: \((3+2i)z+{{(2-i)}^{2}}=4+i\). Hiệu phần thực và phần ảo của số phức z là:
Tìm n biết \(\frac{1}{{{\log }_{2}}x}+\frac{1}{{{\log }_{{{2}^{2}}}}x}+\frac{1}{{{\log }_{{{2}^{3}}}}x}+...+\frac{1}{{{\log }_{{{2}^{n}}}}x}=\frac{465}{{{\log }_{2}}x}\) luôn đúng với mọi \(x>0,x\ne 1.\)
Giải bất phương trình \({{\log }_{2}}\left( 3x-2 \right)>{{\log }_{2}}\left( 6-5x \right)\) được tập nghiệm là \(\left( a;b \right)\) Hãy tính tổng S=a+b
Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng \(\left( P \right):x+y-2z+3=0\) và điểm \(I\left( 1;\,1;\,0 \right)\). Phương trình mặt cầu tâm I và tiếp xúc với \(\left( P \right)\) là:
Cho hàm số \(y={{x}^{3}}-3{{x}^{2}}+6x+5.\) Tiếp tuyến của đồ thị hàm số có hệ số góc nhỏ nhất có phương trình là
Cho hàm số \(f\left( x \right)=a{{x}^{3}}+b{{x}^{2}}+cx+d\) có đồ thị như hình vẽ bên dưới.
Mệnh đề nào sau đây sai?
Phần ảo của số phức \(z={{\left( 1-2i \right)}^{2}}+1\)


