Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng \(\left( P \right):x+y-2z+3=0\) và điểm \(I\left( 1;\,1;\,0 \right)\). Phương trình mặt cầu tâm I và tiếp xúc với \(\left( P \right)\) là:
A. \({\left( {x - 1} \right)^2} + {\left( {y - 1} \right)^2} + {z^2} = \frac{{25}}{6}\)
B. \({\left( {x - 1} \right)^2} + {\left( {y - 1} \right)^2} + {z^2} = \frac{5}{{\sqrt 6 }}\)
C. \({\left( {x + 1} \right)^2} + {\left( {y + 1} \right)^2} + {z^2} = \frac{{25}}{6}\)
D. \({\left( {x - 1} \right)^2} + {\left( {y - 1} \right)^2} + {z^2} = \frac{5}{6}\)
Lời giải của giáo viên
ToanVN.com
Mặt cầu tiếp xúc mặt phẳng nên bán kính mặt cầu là: \(r=d\left( I,\left( P \right) \right)=\frac{5}{\sqrt{6}}\).
Vậy phương trình mặt cầu là: \({{\left( x-1 \right)}^{2}}+{{\left( y-1 \right)}^{2}}+{{z}^{2}}=\frac{25}{6}\).
CÂU HỎI CÙNG CHỦ ĐỀ
Cho hàm số \(y=f\left( x \right)\) xác định, liên tục trên \(\mathbb{R}\) và có bảng biến thên như hình bên. Tìm số nghiệm của phương trình \(3\left| f\left( x \right) \right|-7=0\).
Trong không gian với hệ trục tọa độ Oxyz, cho điểm \(I\left( 2;-2;0 \right).\) Viết phương trình mặt cầu tâm I bán kính R=4
Giả sử \(\int\limits_{0}^{9}{f\left( x \right)\text{d}x}=37\) và \(\int\limits_{9}^{0}{g\left( x \right)\text{d}x}=16\). Khi đó, \(I=\int\limits_{0}^{9}{\left[ 2f\left( x \right)+3g(x) \right]\text{d}x}\) bằng:
Đồ thị hàm số \(y=\frac{2x-3}{x-1}\) có các đường tiệm cận đứng và tiệm cận ngang lần lượt là:
Tính đạo hàm của hàm số \(y = {\log _5}\left( {{x^2} + 2} \right).\)
Cho lăng trụ tam giác đều \(ABC.{A}'{B}'{C}'\) có cạnh đáy bằng a và \(A{B}'\bot B{C}'\). Khi đó thể tích của khối lăng trụ trên sẽ là:
Giải bất phương trình \({{\log }_{2}}\left( 3x-2 \right)>{{\log }_{2}}\left( 6-5x \right)\) được tập nghiệm là \(\left( a;b \right)\) Hãy tính tổng S=a+b
Cho hàm số \(f\left( x \right)\) liên tục trên \(\mathbb{R}\) và thỏa mãn \(\int\limits_{-5}^{1}{f\left( x \right)dx}=9\). Tính tích phân \(\int\limits_{0}^{2}{\left[ f\left( 1-3x \right)+9 \right]}dx\):
Tìm n biết \(\frac{1}{{{\log }_{2}}x}+\frac{1}{{{\log }_{{{2}^{2}}}}x}+\frac{1}{{{\log }_{{{2}^{3}}}}x}+...+\frac{1}{{{\log }_{{{2}^{n}}}}x}=\frac{465}{{{\log }_{2}}x}\) luôn đúng với mọi \(x>0,x\ne 1.\)
Cho số phức z thỏa mãn: \((3+2i)z+{{(2-i)}^{2}}=4+i\). Hiệu phần thực và phần ảo của số phức z là:
Cho số phức z thoả mãn \(\left| z-3+4i \right|=2,\text{w}=2z+1-i.\) Khi đó \(\left| \text{w} \right|\) có giá trị lớn nhất là:
Cho hàm số \(y={{x}^{3}}-3{{x}^{2}}+6x+5.\) Tiếp tuyến của đồ thị hàm số có hệ số góc nhỏ nhất có phương trình là
Đường cong trong hình bên là đồ thị của hàm số nào trong các hàm số dưới đây?
Cho hàm số \(f\left( x \right)=a{{x}^{3}}+b{{x}^{2}}+cx+d\) có đồ thị như hình vẽ bên dưới.
Mệnh đề nào sau đây sai?


