Tính đạo hàm của hàm số \(y = {\log _2}\left( {x + {e^x}} \right)\)
A. \(y' = \frac{{1 + {e^x}}}{{\left( {x + {e^x}} \right)\ln 2}}\)
B. \(y' = \frac{{1 + {e^x}}}{{x + {e^x}}}\)
C. \(y' = \frac{1}{{\left( {x + {e^x}} \right)\ln 2}}\)
D. \(y' = \frac{{1 + {e^x}}}{{\ln 2}}\)
Lời giải của giáo viên
ToanVN.com
CÂU HỎI CÙNG CHỦ ĐỀ
Trong không gian Oxyz cho điểm M(1; 2; 1) và đường thẳng \(\left( d \right):\frac{{x + 2}}{2} = \frac{{y - 2}}{1} = \frac{{z - 1}}{2}\). Viết phương trình mặt phẳng \(\left( \alpha \right)\) đi qua M và chứa đường thẳng (d).
Cho khối nón tròn xoay có chiều cao h, đường sinh lvà bán kính đường tròn đáy bằng R. Tính diện tích toàn phần của khối nón.
Đồ thị hàm số \(y = {x^4} - 4{x^2} + 1\) cắt trục Ox tại mấy điểm?
Cho hình lăng trụ ABC.A’B’C’. Gọi M, N, P lần lượt là các điểm thuộc các cạnh AA’, BB’, CC’ sao cho AM = 2MA', NB' = 2NB, PC = PC'. Gọi V1,V2 lần lượt là thể tích của hai khối đa diện ABCMNP và A'B'C'MNP. Tính tỉ số \(\frac{{{V_1}}}{{{V_2}}}\).
Cho \(\int\limits_1^3 {f\left( x \right)dx} = 3\) và \(\int\limits_1^3 {g\left( x \right)dx} = 4\), khi đó \(\int\limits_1^3 {\left[ {4f\left( x \right) + g\left( x \right)} \right]dx} \) bằng
Trong không gian Oxyz, cho hai điểm \(I\left( {2;4; - 1} \right)\) và \(A\left( {0;2;3} \right)\). Phương trình mặt cầu có tâm I và đi qua điểm A là:
Trong không gian Oxyz cho hai điểm \(A\left( {10;6; - 2} \right),\,\,\,B\left( {5;10; - 9} \right)\) và mặt phẳng \(\left( \alpha \right):2x + 2y + z - 12 = 0\). Điểm M di động trên mặt phẳng \(\left( \alpha \right)\) sao cho MA, MB luôn tạo với \(\left( \alpha \right)\) các góc bằng nhau. Biết rằng M luôn thuộc một đường tròn \(\left( \omega \right)\) cố định. Hoành độ của tâm đường tròn \(\left( \omega \right)\) bằng
Trong không gian Oxyz cho \(A\left( { - 3;0;0} \right),B\left( {0;0;3} \right),C\left( {0; - 3;0} \right)\) và mặt phẳng \(\left( P \right):x + y + z - 3 = 0\). Tìm trên (P) điểm M sao cho \(\left| {\overrightarrow {MA} + \overrightarrow {MB} - \overrightarrow {MC} } \right|\) nhỏ nhất
Biết \({\log _6}2 = a,{\log _6}5 = b\). Tính \(I = {\log _3}5\) theo a. b
Cho hàm số y = f(x) có đồ thị như hình vẽ bên dưới
.png)
Hàm số đã cho nghịch biến trên khoảng nào dưới đây?
Cho hàm số y = f(x) xác định, liên tục trên R và có bảng biến thiên như sau:
.png)
Tìm số nghiệm thực của phương trình f(x) + 1 =0
Trong không gian Oxyz, cho hai mặt phẳng \(\left( \alpha \right):x + y + z - 1 = 0\), \(\left( \beta \right):2x - y + mz - m + 1 = 0\,\,\,\left( {m \in R} \right)\). Để \(\left( \alpha \right) \bot \left( \beta \right)\) thì m phải có giá trị bằng:
Hình chóp S.ABC có đáy là tam giác vuông tại B,AB = a, AC = 2a, SA vuông góc với mặt phẳng đáy, SA = 2a Gọi \(\varphi \) là góc tạo bởi hai mặt phẳng \(\left( {SAC} \right),\left( {SBC} \right)\). Tính \(\cos \varphi = ?\)
Cho hình chóp S.ABCD có đáy là hình vuông cạnh a. Tam giác SAB đều và nằm trong mặt phẳng vuông góc với đáy. Gọi M, N lần lượt là trung điểm của AB, AD. Tính khoảng cách từ điểm D đến mặt phẳng (SCN) theo a.
Cho \(I = \int\limits_1^2 {\frac{{x + \ln x}}{{{{\left( {x + 1} \right)}^2}}}dx} = \frac{a}{b}\ln 2 - \frac{1}{c}\) với a, b, m là các số nguyên dương và các phân số là phân số tối giản. Tính giá trị của biểu thức \(S = \frac{{a + b}}{c}\).


