Người ta bỏ bốn quả bóng bàn cùng kích thước, bán kính bằng \(a\) vào trong một chiếc hộp hình trụ có đáy bằng hỉnh tròn lớn của quả bóng bàn. Biết quả bóng nằm dưới cùng, quả bóng nằm trên cùng lần lượt tiếp xúc với mặt đáy dưới và mặt đáy trên của hình trụ đó. Lúc đó, diện tích xung quanh của hình trụ bằng
A. \(8\pi {a^2}.\)
B. \(4\pi {a^2}.\)
C. \(16\pi {a^2}.\)
D. \(12\pi {a^2}.\)
Lời giải của giáo viên
ToanVN.com
Chiều cao hình trụ \(h = 4d = 4.2r = 8a\)
Bán kính đáy hình trụ là R = a
Diện tích xung quanh của khối trụ là:
\({S_{xq}} = 2\pi Rh = 2\pi .a.8a = 16\pi {a^2}\)
Chọn C.
CÂU HỎI CÙNG CHỦ ĐỀ
Hàm số \(y = \sqrt {{x^2} + 3x + 5} \). Tính y’(1) được :
Cho số nguyên dương \(n \ge 2\), số a được gọi là căn bậc n của số thực b nếu:
Nếu \(\int {f(x)\,dx = {e^x} + {{\sin }^2}x} + C\) thì f(x) bằng
Cho khối chóp S.ABCD có đáy ABCD là hình vuông cạnh a, cạnh bên SA vuông góc với đáy và SA = a. Tính thể tích V của khối chóp đã cho.
Tính tích phân \(I = \int\limits_0^{\dfrac{\pi }{2}} {\left( {\cos x + {e^x}} \right)\,dx} \).
Cho số phức z = 2 + 3i. Giá trị của \(|2iz - \overline z |\) bằng :
Gọi M, N là giao điểm của đồ thị hàm số \(y = \dfrac{{x + 1}}{{x - 2}}\) và đường thẳng d: y = x + 2. Hoành độ trung điểm I của đoạn MN là
Cho hàm số \(f(x) = {x^3} + a{x^2} + bx + c\). Mệnh đề nào sau đây sai ?
Cho số phức z thỏa mãn sau \(|z - 2 - 2i| = 1\). Số phức z - i có mô đun nhỏ nhất là:
Cho số phức z thỏa mãn \(|z + 3| + |z - 3| = 10\). Giá trị nhỏ nhất của \(|z|\) là:
Phương trình nào sau đây không phải là phương trình mặt cầu ?


