Một ô tô bắt đầu chuyển động nhanh dần đều với vận tốc \({{v}_{1}}\left( t \right)=7t\left( \text{m/s} \right)\). Đi được \(5\left( \text{s} \right)\), người lái xe phát hiện chướng ngại vật và phanh gấp, ô tô tiếp tục chuyển động chậm dần đều với gia tốc \(a=-70\left( \text{m/}{{\text{s}}^{\text{2}}} \right)\). Tính quãng đường \(S\left( \text{m} \right)\) đi được của ô tô từ lúc bắt đầu chuyển bánh cho đến khi dừng hẳn.
A. \(S = 87,50\left( {\rm{m}} \right)\)
B. \(S = 94,00\left( {\rm{m}} \right)\)
C. \(S = 95,70\left( {\rm{m}} \right)\)
D. \(S = 96,25\left( {\rm{m}} \right)\)
Lời giải của giáo viên
ToanVN.com
Vận tốc ô tô tại thời điểm bắt đầu phanh là: \({{v}_{1}}\left( 5 \right)=35\left( m/s \right)\).
Vận tốc của chuyển động sau khi phanh là: \({{v}_{2}}\left( t \right)=-70t+C\). Do \({{v}_{2}}\left( 0 \right)=35\Rightarrow C=35\Rightarrow {{v}_{2}}\left( t \right)=-70t+35\).
Khi xe dừng hẳn tức là \({{v}_{2}}\left( t \right)=0\Rightarrow -70t+35=0\Rightarrow t=\frac{1}{2}\).
Quãng đường \(S\left( m \right)\) đi được của ô tô từ lúc bắt đầu chuyển bánh cho đến khi dừng hẳn là:
\(S\left( m \right)=\int\limits_{0}^{5}{7t.\,dt}+\int\limits_{0}^{\frac{1}{2}}{\left( -70t+35 \right)\,dt}=96,25\left( m \right)\).
CÂU HỎI CÙNG CHỦ ĐỀ
Cho hàm số \(f\left( x \right) = {\left( {\sqrt x - {1 \over {\sqrt x }}} \right)^3}\) Hàm số có đạo hàm \(f'\left( x \right)\) bằng:
Trong không gian với hệ trục tọa độ \(\text{Oxyz}\), cho ba điểm A(-1;0;0) , B(0;-2;0) và C(0;0;3) . Mặt phẳng đi qua ba điểm A,B,C có phương trình là
Với a là số thực dương tùy ý, \(\sqrt {{a^5}} \) bằng
Cho số phức z thỏa mãn \(\left| z \right|=1\). Tìm giá trị lớn nhất của biểu thức \(A=\left| 1+\frac{5i}{2} \right|\)
Tính thể tích khối hộp chữ nhật có các kích thước b, 2b, 3b
Cho \({{z}_{1}}=4-2i\). Hãy tìm phần ảo của số phức \({{z}_{2}}={{\left( 1-2i \right)}^{2}}+\overline{{{z}_{1}}}\).
Cho hai số phức \({{z}_{1}}=2-3i{{,}^{{}}}{{z}_{2}}=1+i.\) Tìm số phức \(z={{z}_{1}}+{{z}_{2}}\).
Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình bình hành. Gọi \(d\) là giao tuyến của hai mặt phẳng \(\left( {SAD} \right)\) và \(\left( {SBC} \right)\). Khẳng định nào sau đây là đúng?
Trong không gian với hệ tọa độ Oxyz, cho hai mặt phẳng (P):2x+y-z-1=0 và (Q):x-2y-5=0. Khi đó giao tuyến của (P) và (Q) có một vectơ chỉ phương là
Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P):x-2y+z-5=0. Điểm nào dưới đây thuộc (P)?
Trong một hộp bút gồm có 8 cây bút bi, 6 cây bút chì và 10 cây bút màu. Hỏi có bao nhiêu cách chọn ra một cây bút từ hộp bút đó?
Nếu \(\int\limits_1^3 {f(x)dx} = 8\) thì \(\int\limits_1^3 {\left[ {\frac{1}{2}f\left( x \right) + 1} \right]dx} \) bằng
Cho hình chóp S. ABCD có đáy ABCD là hình vuông cạnh a, \(SA \bot \left( {ABCD} \right)\), SD = 2a. Gọi \(\alpha \) là góc giữa SC và mp (ABCD). Chọn khẳng định đúng trong các khẳng định sau ?
Tiệm cận ngang của đồ thị hàm số \(y = \frac{{3x + 2}}{{x - 1}}\) là
Cho a, b là hai số dương bất kì. Mệnh đề nào sau đây là đúng?


