Trong không gian với hệ tọa độ Oxyz, cho hai mặt phẳng (P):2x+y-z-1=0 và (Q):x-2y-5=0. Khi đó giao tuyến của (P) và (Q) có một vectơ chỉ phương là
A. \(\overrightarrow u = (1;3;5)\)
B. \(\overrightarrow u = ( - 1;3; - 5)\)
C. \(\overrightarrow u = (2;1; - 1)\)
D. \(\overrightarrow u = (1;-2; 1)\)
Lời giải của giáo viên
ToanVN.com
\(\overrightarrow {{u_d}} = \left[ {\overrightarrow {{u_p}} ,\overrightarrow {{u_Q}} } \right] = (1;3;5)\)
CÂU HỎI CÙNG CHỦ ĐỀ
Cho hàm số \(f\left( x \right) = {\left( {\sqrt x - {1 \over {\sqrt x }}} \right)^3}\) Hàm số có đạo hàm \(f'\left( x \right)\) bằng:
Trong không gian với hệ trục tọa độ \(\text{Oxyz}\), cho ba điểm A(-1;0;0) , B(0;-2;0) và C(0;0;3) . Mặt phẳng đi qua ba điểm A,B,C có phương trình là
Với a là số thực dương tùy ý, \(\sqrt {{a^5}} \) bằng
Cho số phức z thỏa mãn \(\left| z \right|=1\). Tìm giá trị lớn nhất của biểu thức \(A=\left| 1+\frac{5i}{2} \right|\)
Tính thể tích khối hộp chữ nhật có các kích thước b, 2b, 3b
Cho \({{z}_{1}}=4-2i\). Hãy tìm phần ảo của số phức \({{z}_{2}}={{\left( 1-2i \right)}^{2}}+\overline{{{z}_{1}}}\).
Cho hai số phức \({{z}_{1}}=2-3i{{,}^{{}}}{{z}_{2}}=1+i.\) Tìm số phức \(z={{z}_{1}}+{{z}_{2}}\).
Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình bình hành. Gọi \(d\) là giao tuyến của hai mặt phẳng \(\left( {SAD} \right)\) và \(\left( {SBC} \right)\). Khẳng định nào sau đây là đúng?
Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P):x-2y+z-5=0. Điểm nào dưới đây thuộc (P)?
Trong một hộp bút gồm có 8 cây bút bi, 6 cây bút chì và 10 cây bút màu. Hỏi có bao nhiêu cách chọn ra một cây bút từ hộp bút đó?
Nếu \(\int\limits_1^3 {f(x)dx} = 8\) thì \(\int\limits_1^3 {\left[ {\frac{1}{2}f\left( x \right) + 1} \right]dx} \) bằng
Cho hình chóp S. ABCD có đáy ABCD là hình vuông cạnh a, \(SA \bot \left( {ABCD} \right)\), SD = 2a. Gọi \(\alpha \) là góc giữa SC và mp (ABCD). Chọn khẳng định đúng trong các khẳng định sau ?
Cho khối chóp S.ABC có đáy là tam giác ABC cân tại A, \(\widehat{BAC}=120{}^\circ , AB=a\). Cạnh bên SA vuông góc với mặt đáy, SA=a. Thể tích khối chóp đã cho bằng
Tiệm cận ngang của đồ thị hàm số \(y = \frac{{3x + 2}}{{x - 1}}\) là
Cho a, b là hai số dương bất kì. Mệnh đề nào sau đây là đúng?


