Một người tham gia đặt cược đua ngựa với cách cược như sau: Lần đầu người đó đặt cược 20.000 đồng, mỗi lần sau đặt cược gấp đôi lần đặt trước, nếu thua cược người đó mất số tiền đã đặt, nếu thắng cược sẽ được thêm số tiền đã đặt. Người đó thua 9 lần liên tiếp và thắng ở lần thứ 10. Hỏi người cá cược trên được hay thua bao nhiêu tiền?
A. Hòa vốn.
B. Thua 20.000 đồng.
C. Thắng 20.000đ.
D. Thua 40.000 đồng.
Lời giải của giáo viên
ToanVN.com
Đặt số tiền đặt mỗi lần là \({u_1} = {2^0}{\rm{x}}20.000;\,{u_2} = {2^1}{\rm{x}}20.000;\,{u_3} = {2^2}{\rm{x}}20.000;\,....,\,{u_{10}} = {2^9}{\rm{x}}20.000.\,\) Lập thành cấp số nhân có số hạng đầu \({u_1} = 20.000;\,q = 2\)
Tổng số tiền đã tham gia cược là \({S_{10}} = {u_1}\frac{{1 - {p^{10}}}}{{1 - q}} = 20.000\frac{{1 - {2^{10}}}}{{1 - 2}}\)
Số tiền người đó có được sau ván thứ 10 thắng cược là \(T = 2{u_{10}} - {S_{10}} = {2^{10}}.20000 - 20000\left( {{2^{10}} - 1} \right) = 20000\)
Vậy sau 10 ván cược như trên, người đó thắng cược được 20000đ
CÂU HỎI CÙNG CHỦ ĐỀ
Cho hàm số \(f\left( x \right) = \left\{ \begin{array}{l}m\frac{{{x^2} - 4}}{{{x^2} - 3x + 2}} + {n^2},\,\,\,\,khi\,\,x > 2\\nx - {m^2} - 5,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,khi\,x \le 2\end{array} \right.\) Tìm \(m,\,\,n\) để hàm số có giới hạn tại \(x = 2.\)
Chọn giá trị \(f(0)\) để các hàm số \(f(x) = \frac{{\sqrt {2x + 1} - 1}}{{x(x + 1)}}\)liên tục tại điểm \(x = 0\).
Cho hình chóp \(S.ABCD\), tứ giác \(ABCD\) đáy là hình thang vuông tại \(A\) và \(B\), \(SA\) vuông góc với mặt phẳng \(\left( {ABCD} \right)\). Biết \(AB = 2CD = 2AD\). Mệnh đề nào sau đây sai?
Cho hình chóp tứ giác đều có tất cả các cạnh bằng nhau, đường cao của một mặt bên là \(a\sqrt 3 .\) Thể tích V của khối chóp đó là bao nhiêu?
Cho tứ diện \(ABCD\). \(G\) là trọng tâm tam giác \(BCD\). Tìm giao tuyến của hai mặt phẳng \(\left( {ACD} \right)\) và \(\left( {GAB} \right).\)
Cho hàm số \(y = {x^2} + 5x + 4\) có đồ thị \(\left( C \right)\). Tìm tiếp tuyến của \(\left( C \right)\) tại các giao điểm của \(\left( C \right)\) với trục \(Ox\).
Hàm số \(y = \sin x\) đồng biến trên mỗi khoảng nào?
Tổng tất cả các nghiệm của phương trình \(\frac{{\left( {2\cos x - 1} \right)\left( {\sin 2x - \cos x} \right)}}{{\sin x - 1}} = 0\) trên \(\left[ {0;\,\frac{\pi }{2}} \right]\) là \(T\) bằng bao nhiêu?
Trong măt phẳng \(Oxy\) cho điểm \(M\left( { - 2;4} \right)\). Phép vị tự tâm \(O\) tỉ số \(k = - 2\) biến điểm \(M\) thành điểm nào trong các điểm sau?
Nếu \(P(A).P(B) = P(A \cap B)\) thì \(A,B\) là 2 biến cố như thế nào?
Cho hàm số \(y = {x^4} - 2{x^2}\). Mệnh đề nào dưới đây là đúng?
Tính giới hạn \(\mathop {\lim }\limits_{x \to 0} \left( {{x^2}\sin \frac{{{x^2} + 2}}{{{x^2}}}} \right)\)ta có kết quả là bao nhiêu?
.jpg)
.png)


