Một người gửi tiết kiệm ngân hàng với lãi suất 0,5% mỗi tháng theo cách sau: mỗi tháng (vào đầu tháng) người đó gửi vào ngân hàng 10 triệu đồng và ngân hàng tính lãi suất (lãi suất không đổi) dựa trên số tiền tiết kiệm thực tế của tháng đó. Hỏi sau 5 năm, số tiền của người đó có được gần nhất với số tiền nào dưới đây (cả gốc và lãi, đơn vị triệu đồng)?
A. 701,19
B. 701,47
C. 701,12
D. 701
Lời giải của giáo viên
ToanVN.com
Tiền thu được cuối mỗi tháng là:
Tháng 1: \(T_{1}=10+10.0,5 \%=10(1+0,5 \%)\)
Tháng 2: \(T_{2}=10+10.0,5 \%+10+0,5 \%(10+10.0,5 \%+10)=10(1+0,5 \%)^{2}+10(1+0,5 \%)\)
...
Tháng 60:
\(\begin{array}{l} T_{60}=10(1+0,5 \%)+10(1+0,5 \%)^{2}+\ldots 10(1+0,5 \%)^{60} \\ =10(1+0,5 \%) \cdot \frac{(1+0,5 \%)^{60}-1}{05 \%} \approx 701,19 \text { (triệu dồng) } \end{array}\)
CÂU HỎI CÙNG CHỦ ĐỀ
Cho hình nón (N ) có đường kính đáy bằng 4a , đường sinh bằng 5a . Tính diện tích xung quanh của hình nón (N ).
Trong không gian Oxyz , Cho đường thẳng \(\Delta:\left\{\begin{array}{l} x=2+t \\ y=-1-t \\ z=1 \end{array}\right.\). Véc tơ nào dưới đây là một véc tơ chỉ phương của \(\Delta\)?
Cho hàm số y=f(x) liên tục trên \(\mathbb{R}\) và có bảng biến thiên như hình vẽ:

Có bao nhiêu giá trị nguyên của m để phương trình \(f( \sqrt{1+x}-\sqrt{3-x})=f( \sqrt{|m|+1})\) có nghiệm?
Cho hai số thực dương x y ; thỏa mãn \(\log _{3} x+x y=\log _{3}(8-y)+x(8-x)\). Giá trị nhỏ nhất của biểu thức \(P=x^{3}-\left(x^{2}+y^{2}\right)-16 x\) bằng?
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, \(S A \perp(A B C D) \text { và } S A=a \sqrt{3}\) . Khi đó thể tích của hình chóp S.ABCD bằng:

Với a, b là hai số thực dương khác 1, ta có \(\log _{b^{2}} a\) bằng
Cho hình chóp S. ABCD có đáy ABCD là hình vuông cạnh a , SA vuông góc với mặt phẳng (ABCD) và \(SC=a\sqrt3\) (minh họa như hình bên). Góc giữa mặt phẳng (SBC) và và mặt phẳng (ABCD) bằng

Số tiệm cận của đồ thị hàm số \(y=\frac{2 x-3}{x+1}\)là:
Cho cấp số nhân với \(u_1=3\) và \(u_2 = 9\) . Công bội của cấp số nhân đã cho là:
Trong không gian Oxyz, cho điểm \( M(1 ; 2 ; 3) ; N(-1 ; 1 ; 2)\) Phương trình mặt phẳng trung trực của MN là:
Diện tích S của hình phẳng giới hạn bởi các đường \(y=4 x^{2}+x, y=-1, x=0 \text { và } x=1\) được tính bởi công thức nào sau đây?
Xét các số thực a, b thỏa mãn: \(\log _{8}\left(4^{a} . 8^{b}\right)=\log _{4} 16\). Mệnh đề nào dưới đây là đúng?
Giá trị nhỏ nhất của hàm số \(f(x)=x^{4}-6 x^{2}-9\) trên đoạn [-1;4] bằng:
Trong không gian Oxyz cho điểm \(A(-2 ; 0 ; 1) ; B(0 ; 2 ; 3)\) và mặt phẳng \((P): 2 x+y+z-1=0\). Đường thẳng d qua trung điểm I của AB và vuông góc với mặt phẳng (P) có phương trình là:
Tập nghiệm của bất phương trình \(4^{x}-3.2^{x}+2>0\) là:


