Một cái cốc hình trụ có bán kính đáy là \(2\,cm\), chiều cao \(20\,cm\). Trong cốc đang có một ít nước, khoảng cách giữa đáy cốc và mặt nước là \(12\,cm\) (Hình vẽ). Một con quạ muốn uống được nước trong cốc thì mặt nước phải cách miệng cốc không quá \(6\,cm\). Con quạ thông minh mổ những viên bi đá hình cầu có bán kính \(0,6\,cm\) thả vào cốc nước để mực nước dâng lên. Để uống được nước thì con quạ cần thả vào cốc ít nhất bao nhiêu viên bi?
A. \(29\)
B. \(30\)
C. \(28\)
D. \(27\)
Lời giải của giáo viên
ToanVN.com
Để uống được nước thì con quạ phải thả các viên bi vào cốc sao cho mực nước trong cốc dâng lên ít nhất:
\(20 - 12 - 6 = 2\left( {cm} \right)\)
Khi đó, thể tích của mực nước dâng lên là: \(\pi {R^2}.h = \pi {.2^2}.2 = 8\pi \left( {c{m^3}} \right)\)
Thể tích của một viên bi là: \(\frac{4}{3}\pi {r^3} = \frac{4}{3}\pi .0,{6^3} = 0,288\pi \left( {c{m^3}} \right)\)
Ta có: \(8\pi :0,288\pi \approx 27,8 \Rightarrow \)Số viên bi ít nhất mà quạ phải thả vào là: 28 viên.
Chọn C.
CÂU HỎI CÙNG CHỦ ĐỀ
Cho hàm số \(y = f\left( x \right)\) có bảng biến thiên như sau:
Tìm tất cả các giá trị thực của tham số \(m\) sao cho phương trình \(f\left( x \right) = m\) có đúng hai nghiệm.
Cho hàm số \(f\left( x \right) = a{x^4} + b{x^3} + c{x^2} + dx + e\) \(\left( {a \ne 0} \right)\). Biết rằng hàm số \(f\left( x \right)\) có đạo hàm là \(f'\left( x \right)\) và hàm số \(y = f'\left( x \right)\) có đồ thị như hình vẽ dưới. Khi đó mệnh đề nào sau đây sai?
Cho hàm số \(y = f\left( x \right)\) xác định, liên tục trên \(\mathbb{R}\backslash \left\{ 1 \right\}\) và có bảng biến thiên như hình dưới đây
Tập hợp \(S\) tất cả các giá trị của m đề phương trình \(f\left( x \right) = m\) có đúng ba nghiệm thực là
Có tất cả bao nhiêu giá trị nguyên của tham số \(m\) để phương trình \({\log _{\sqrt 2 }}(x - 1) = {\log _2}(mx - 8)\) có hai nghiệm thực phân biệt?
Mặt cầu có bán kính \(a\) thì có diện tích xung quanh bằng
Cho các dạng đồ thị (I), (II), (III) như hình dưới đây:
Đồ thị hàm số \(y = {x^3} + b{x^2} - x + d{\rm{ }}\left( {b,d \in \mathbb{R}} \right)\) có thể là dạng nào trong các dạng trên?
Đường cong trong hình dưới là đồ thị của một hàm số trong bốn hàm số được liệt kê ở bốn phương án A, B, C, D dưới đây. Hỏi hàm số đó là hàm số nào ?
Cho tứ diện \(ABCD\) có \(AB,AC,AD\) đôi một vuông góc, \(AB = 4cm,AC = 5cm,AD = 3cm.\) Thể tích khối tứ diện \(ABCD\) bằng:
Có tất cả bao nhiêu giá trị nguyên của tham số \(m\)thuộc đoạn \(\left[ { - 2018;2019} \right]\) để hàm số \(y = m{x^4} + \left( {m + 1} \right){x^2} + 1\)có đúng một điểm cực đại?
Tìm tập xác định của hàm số \(y = \frac{1}{{1 - \ln x}}\).
Cho hàm số \(y = f\left( x \right)\) xác định, liên tục trên \(\mathbb{R}\) và có đồ thị như hình vẽ dưới đây. Mệnh đề nào sau đây đúng?
Cho hàm số \(y = f\left( x \right)\) có bảng biến thiên như sau:
Mệnh đề nào sau đây đúng?
Một hình trụ có hai đáy là hai hình tròn \(\left( {O;r} \right)\) và \(\left( {O';r} \right).\) Khoảng cách giữa hai đáy là \(OO' = r\sqrt 3 .\) Một hình nón có đỉnh là \(O\) và có đáy là hình tròn \(\left( {O';r} \right).\) Gọi \({S_1}\) là diện tích xung quanh của hình trụ và \({S_2}\) là diện tích xung quanh của hình nón. Tính tỉ số \(\frac{{{S_1}}}{{{S_2}}}.\)
Cho số dương \(a\) và \(m,n \in \mathbb{R}\). Mệnh đề nào sau đây đúng?
Biết phương trình \({\log _5}\frac{{2\sqrt x + 1}}{x} = 2{\log _3}\left( {\frac{{\sqrt x }}{2} - \frac{1}{{2\sqrt x }}} \right)\) có một nghiệm dạng \(x = a + b\sqrt 2 \) trong đó \(a,b\) là các số nguyên. Tính \(2a + b\).


