Câu hỏi Đáp án 3 năm trước 71

Có tất cả bao nhiêu giá trị nguyên của tham số \(m\) để phương trình \({\log _{\sqrt 2 }}(x - 1) = {\log _2}(mx - 8)\) có hai nghiệm thực phân biệt? 

A. \(3\) 

Đáp án chính xác ✅

B. vô số 

C. \(4\) 

D. \(5\) 

Lời giải của giáo viên

verified ToanVN.com

Điều kiện: \(\left\{ \begin{array}{l}x > 1\\mx > 8\end{array} \right..\)

Ta có: \({\log _{\sqrt 2 }}(x - 1) = {\log _2}(mx - 8)\,\,\,\,(1)\; \Leftrightarrow lo{g_2}{\left( {x - 1} \right)^2} = {\log _2}\left( {mx - 8} \right)\)

\( \Leftrightarrow {\left( {x - 1} \right)^2} = mx - 8 \Leftrightarrow {x^2} - 2x + 9 = m \Leftrightarrow x - 2 + \frac{9}{x} = m\;\;\;\left( {do\;\;x > 1} \right)\;\;\;\left( 2 \right)\)

Phương trình (1) có 2 nghiệm thực phân biệt \( \Leftrightarrow \) Phương trình (2) có 2 nghiệm thực phân biệt lớn hơn 1 (*)

Xét hàm số \(f\left( x \right) = x - 2 + \frac{9}{x},\,\,\,x > 1\) có \(f'\left( x \right) = 1 - \frac{9}{{{x^2}}},\,\,\,f'\left( x \right) = 0 \Leftrightarrow x = 3\)

Bảng biến thiên:

(*)\( \Leftrightarrow 4 < m < 8\). Mà \(m \in \mathbb{Z} \Rightarrow m \in \left\{ {5;6;7} \right\}\): có 3 giá trị của m thỏa mãn.

Chọn A.

CÂU HỎI CÙNG CHỦ ĐỀ

Câu 1: Trắc nghiệm

Cho hàm số \(y = f\left( x \right)\) có bảng biến thiên như sau:

Tìm tất cả các giá trị thực của tham số \(m\) sao cho phương trình \(f\left( x \right) = m\) có đúng hai nghiệm.

Xem lời giải » 3 năm trước 75
Câu 2: Trắc nghiệm

Cho hàm số \(f\left( x \right) = a{x^4} + b{x^3} + c{x^2} + dx + e\) \(\left( {a \ne 0} \right)\). Biết rằng hàm số \(f\left( x \right)\) có đạo hàm là \(f'\left( x \right)\) và hàm số \(y = f'\left( x \right)\) có đồ thị như hình vẽ dưới. Khi đó mệnh đề nào sau đây sai?

Xem lời giải » 3 năm trước 73
Câu 3: Trắc nghiệm

Cho hàm số \(y = f\left( x \right)\) xác định, liên tục trên \(\mathbb{R}\backslash \left\{ 1 \right\}\) và có bảng biến thiên như hình dưới đây

Tập hợp \(S\) tất cả các giá trị của m đề phương trình \(f\left( x \right) = m\) có đúng ba nghiệm thực là

Xem lời giải » 3 năm trước 70
Câu 4: Trắc nghiệm

Mặt cầu có bán kính \(a\) thì có diện tích xung quanh bằng 

Xem lời giải » 3 năm trước 70
Câu 5: Trắc nghiệm

Cho các dạng đồ thị (I), (II), (III) như hình dưới đây:

Đồ thị hàm số \(y = {x^3} + b{x^2} - x + d{\rm{ }}\left( {b,d \in \mathbb{R}} \right)\) có thể là dạng nào trong các dạng trên?

Xem lời giải » 3 năm trước 69
Câu 6: Trắc nghiệm

Đường cong trong hình dưới là đồ thị của một hàm số trong bốn hàm số được liệt kê ở bốn phương án A, B, C, D dưới đây. Hỏi hàm số đó là hàm số nào ?

Xem lời giải » 3 năm trước 68
Câu 7: Trắc nghiệm

Cho tứ diện \(ABCD\) có \(AB,AC,AD\) đôi một vuông góc, \(AB = 4cm,AC = 5cm,AD = 3cm.\) Thể tích khối tứ diện \(ABCD\) bằng: 

Xem lời giải » 3 năm trước 67
Câu 8: Trắc nghiệm

Có tất cả bao nhiêu giá trị nguyên của tham số \(m\)thuộc đoạn \(\left[ { - 2018;2019} \right]\) để hàm số \(y = m{x^4} + \left( {m + 1} \right){x^2} + 1\)có đúng một điểm cực đại? 

Xem lời giải » 3 năm trước 67
Câu 9: Trắc nghiệm

Một hình trụ có hai đáy là hai hình tròn \(\left( {O;r} \right)\) và \(\left( {O';r} \right).\) Khoảng cách giữa hai đáy là \(OO' = r\sqrt 3 .\) Một hình nón có đỉnh là \(O\) và có đáy là hình tròn \(\left( {O';r} \right).\) Gọi \({S_1}\) là diện tích xung quanh của hình trụ và \({S_2}\) là diện tích xung quanh của hình nón. Tính tỉ số \(\frac{{{S_1}}}{{{S_2}}}.\)

Xem lời giải » 3 năm trước 66
Câu 10: Trắc nghiệm

Cho hình chóp tứ giác đều có tất cả các cạnh bằng \(2a.\) Bán kính mặt cầu ngoại tiếp hình chóp đã cho bằng \(\frac{{a\sqrt 6 }}{2}.\)

Xem lời giải » 3 năm trước 66
Câu 11: Trắc nghiệm

Cho hàm số \(y = f\left( x \right)\) xác định, liên tục trên \(\mathbb{R}\) và có đồ thị như hình vẽ dưới đây. Mệnh đề nào sau đây đúng?

Xem lời giải » 3 năm trước 66
Câu 12: Trắc nghiệm

Tìm tập xác định của hàm số \(y = \frac{1}{{1 - \ln x}}\). 

Xem lời giải » 3 năm trước 66
Câu 13: Trắc nghiệm

Cho hàm số \(y = f\left( x \right)\) có bảng biến thiên như sau:

Mệnh đề nào sau đây đúng?

Xem lời giải » 3 năm trước 65
Câu 14: Trắc nghiệm

Biết phương trình \({\log _5}\frac{{2\sqrt x  + 1}}{x} = 2{\log _3}\left( {\frac{{\sqrt x }}{2} - \frac{1}{{2\sqrt x }}} \right)\) có một nghiệm dạng \(x = a + b\sqrt 2 \) trong đó \(a,b\) là các số nguyên. Tính  \(2a + b\). 

Xem lời giải » 3 năm trước 65
Câu 15: Trắc nghiệm

Cho số dương \(a\) và \(m,n \in \mathbb{R}\). Mệnh đề nào sau đây đúng? 

Xem lời giải » 3 năm trước 65

📝 Đề thi liên quan

Xem thêm »
Xem thêm »

❓ Câu hỏi mới nhất

Xem thêm »
Xem thêm »