Một cái cốc hình trụ có bán kính đáy là 2cm , chiều cao 20cm . Trong cốc đang có một ít nước, khoảng cách giữa đáy cốc và mặt nước là 12cm (Hình vẽ). Một con quạ muốn uống được nước trong cốc thì mặt nước phải cách miệng cốc không quá 6cm . Con quạ thông minh mổ những viên bi đá hình cầu có bán kính 0,6cm thả vào cốc nước để mực nước dâng lên. Để uống được nước thì con quạ cần thả vào cốc ít nhất bao nhiêu viên bi?
.png)
A. 29
B. 30
C. 28
D. 27
Lời giải của giáo viên
ToanVN.com
Để uống được nước thì con quạ phải thả các viên bi vào cốc sao cho mực nước trong cốc dâng lên ít nhất:
20 -12 - 6 = 2( cm)
Khi đó, thể tích của mực nước dâng lên là: \(\pi {{R}^{2}}.h=\pi {{.2}^{2}}.2=8\pi \left( c{{m}^{3}} \right)\)
Thể tích của một viên bi là: \(\frac{4}{3}\pi {{r}^{3}}=\frac{4}{3}\pi .0,{{6}^{3}}=0,288\pi \left( c{{m}^{3}} \right)\)
Ta có: \(8\pi :0,288\pi \approx 27,8\Rightarrow \) Số viên bi ít nhất mà quạ phải thả vào là: 28 viên.
CÂU HỎI CÙNG CHỦ ĐỀ
Hàm số \(y=\frac{{{x}^{3}}}{3}-3{{x}^{2}}+5x-2\) nghịch biến trên khoảng nào dưới đây?
Cho hàm số \(y=a{{x}^{4}}+b{{x}^{2}}+c\left( a\ne 0 \right)\) có bảng biến thiên dưới đây:
Tính P = a -2b +3c
Cho hình chóp S.ABCD có đáy hình chữ nhật, SA vuông góc với mặt phẳng (ABCD). Tâm mặt cầu ngoại tiếp hình tròn S.ABCD là điểm I với
Có tất cả bao nhiêu giá trị nguyên của tham số m để phương trình \({{\log }_{\sqrt{2}}}\left( x-1 \right)={{\log }_{2}}\left( mx-8 \right)\) có hai nghiệm phân biệt?
Cho hình chóp S.ABC có SA =2a, SB = 3a, SC = 4a và ASB = BSC = 600, ASC = 900. Tính thể tích V của khối chóp S.ABC.
Tìm tập xác định của hàm số \(y = \frac{1}{{1 - \ln x}}\)
Cho số dương a và \(m,n\in \mathbb{R}\). Mệnh đề nào sau đây đúng?
Cho hàm số \(f\left( x \right)=\frac{x-{{m}^{2}}}{x+8}\) với m là tham số thực. Giả sử \({{m}_{0}}\) là giá trị dương của tham số m để hàm số có giá trị nhỏ nhất trên đoạn [0;3] bằng -3. Giá trị \({{m}_{0}}\) thuộc khoảng nào trong các khoảng cho dưới đây?
Phương trình tiếp tuyến của đồ thị hàm số \(y=f\left( x \right){{\left( {{x}^{2}}-1 \right)}^{2}}\) tại điểm \(M\left( 2;9 \right)\) là
Hàm số nào sau đây nghịch biến trên mỗi khoảng xác định của nó?
Có tất cả bao nhiêu giá trị nguyên của tham số m thuộc đoạn [-2018;2019] để hàm số \(y=m{{x}^{4}}+\left( m+1 \right){{x}^{2}}+1\) có đúng một điểm cực đại?
Cho hàm số y = f (x) có bảng biến thiên như sau:
Mệnh đề nào sau đây đúng?
Mặt cầu có bán kính a thì có diện tích xung quang bằng
Giả sử \(m=-\frac{a}{b},a,b\in {{\mathbb{Z}}^{+}},\left( a,b \right)=1\) là giá trị thực của tham số m để đường thẳng d:y=-3x+m cắt đồ thị hàm số \(y=\frac{2x+1}{x-1}\left( C \right)\) tại hai điểm phân biệt A,B sao cho trọng tâm tam giác OAB thuộc đường thẳng \(\Delta :x-2y-2=0\) với O là gốc tọa độ. Tính a+2b.


