Cho hình chóp S.ABCD có đáy hình chữ nhật, SA vuông góc với mặt phẳng (ABCD). Tâm mặt cầu ngoại tiếp hình tròn S.ABCD là điểm I với
A. I là trung điểm của đoạn thẳng SD.
B. I là trung điểm của đoạn thẳng AC.
C. I là trung điểm của đoạn thẳng SC.
D. I là trung điểm của đoạn thẳng SB.
Lời giải của giáo viên
ToanVN.com
.png)
Gọi I là trung điểm của đoạn thẳng SC.
O là tâm của hình chữ nhật ABCD.
Ta chứng minh I là tâm mặt cầu ngoại tiếp hình chóp S.ABCD:
Do OI là đường trung bình của tam giác \(SAC\Rightarrow OI//SA\)
Mà \(SA\bot \left( ABCD \right)=>OI\bot \left( ABCD \right)=>IA=IB=IC=ID\)
(do O là tâm của hình chữ nhật ABCD) (1)
\(\Delta SAC\) vuông tại A, I là trung điểm của \(SC\Rightarrow IA=IS=IC\,\left( 2 \right)\)
Từ (1), (2) suy ra : \(\Rightarrow IA=IB=IC=ID=IS\Rightarrow I\) là tâm mặt cầu ngoại tiếp hình chóp S.ABCD.
CÂU HỎI CÙNG CHỦ ĐỀ
Hàm số \(y=\frac{{{x}^{3}}}{3}-3{{x}^{2}}+5x-2\) nghịch biến trên khoảng nào dưới đây?
Cho hàm số \(y=a{{x}^{4}}+b{{x}^{2}}+c\left( a\ne 0 \right)\) có bảng biến thiên dưới đây:
Tính P = a -2b +3c
Có tất cả bao nhiêu giá trị nguyên của tham số m để phương trình \({{\log }_{\sqrt{2}}}\left( x-1 \right)={{\log }_{2}}\left( mx-8 \right)\) có hai nghiệm phân biệt?
Cho hình chóp S.ABC có SA =2a, SB = 3a, SC = 4a và ASB = BSC = 600, ASC = 900. Tính thể tích V của khối chóp S.ABC.
Cho số dương a và \(m,n\in \mathbb{R}\). Mệnh đề nào sau đây đúng?
Tìm tập xác định của hàm số \(y = \frac{1}{{1 - \ln x}}\)
Cho hàm số \(f\left( x \right)=\frac{x-{{m}^{2}}}{x+8}\) với m là tham số thực. Giả sử \({{m}_{0}}\) là giá trị dương của tham số m để hàm số có giá trị nhỏ nhất trên đoạn [0;3] bằng -3. Giá trị \({{m}_{0}}\) thuộc khoảng nào trong các khoảng cho dưới đây?
Hàm số nào sau đây nghịch biến trên mỗi khoảng xác định của nó?
Giả sử \(m=-\frac{a}{b},a,b\in {{\mathbb{Z}}^{+}},\left( a,b \right)=1\) là giá trị thực của tham số m để đường thẳng d:y=-3x+m cắt đồ thị hàm số \(y=\frac{2x+1}{x-1}\left( C \right)\) tại hai điểm phân biệt A,B sao cho trọng tâm tam giác OAB thuộc đường thẳng \(\Delta :x-2y-2=0\) với O là gốc tọa độ. Tính a+2b.
Phương trình tiếp tuyến của đồ thị hàm số \(y=f\left( x \right){{\left( {{x}^{2}}-1 \right)}^{2}}\) tại điểm \(M\left( 2;9 \right)\) là
Mặt cầu có bán kính a thì có diện tích xung quang bằng
Có tất cả bao nhiêu giá trị nguyên của tham số m thuộc đoạn [-2018;2019] để hàm số \(y=m{{x}^{4}}+\left( m+1 \right){{x}^{2}}+1\) có đúng một điểm cực đại?
Cho khối chóp tứ giác đều S.ABCD có thể tích bằng \({{a}^{3}}\) và đáy ABCD là hình vuông cạnh a. Tính \(cos\alpha \) với \(\alpha \) là góc giữa mặt bên và mặt đáy
Cho hàm số y = f (x) có bảng biến thiên như sau:
Mệnh đề nào sau đây đúng?


