Câu hỏi Đáp án 3 năm trước 56

Hình chóp tứ giác đều có cạnh đáy bằng a, chiều cao \(h = \frac{a}{{\sqrt 2 }}.\) Góc giữa cạnh bên với mặt đáy là:

A. \(60^0\)

B. \(15^0\)

C. \(45^0\)

Đáp án chính xác ✅

D. \(30^0\)

Lời giải của giáo viên

verified ToanVN.com

Gọi SO là đường cao của hình chóp tứ giác đều S.ABCD. Do đó góc giữa cạnh bên và mặt đáy là góc SBO 

Ta có: \(SO = h = \frac{a}{{\sqrt 2 }};OB = \frac{{BD}}{2} = \frac{a}{{\sqrt 2 }}.\) 

Tam giác vuông SBO tại O có \(SO = OB = \frac{a}{{\sqrt 2 }}\) nên cân tại O.

Suy ra \(\widehat {SBO} = {45^0}.\) 

CÂU HỎI CÙNG CHỦ ĐỀ

Câu 1: Trắc nghiệm

Số mặt phẳng đối xứng của hình chóp đều S.ABCD là :

Xem lời giải » 3 năm trước 67
Câu 2: Trắc nghiệm

Cho tập \(A = \left\{ {0;1;2;3;4;5;7;9} \right\}.\) hỏi có bao nhiêu số tự nhiên 8 chữ số khác nhau lập từ A, biết các chữ số chãn không đứng cạnh nhau.

Xem lời giải » 3 năm trước 67
Câu 3: Trắc nghiệm

Cho hàm số \(y=f(x)\) có bảng biến thiên như hình vẽ:

Số nghiệm của phương trình \(f(x)=-1\) là?

Xem lời giải » 3 năm trước 66
Câu 4: Trắc nghiệm

Cho tứ giác ABCD. Có bao nhiêu vector (khác \(\overrightarrow 0 \)) có điểm đầu và điểm cuối là các đỉnh của tứ giác.

Xem lời giải » 3 năm trước 64
Câu 5: Trắc nghiệm

Cho hàm số \(y = \frac{{ - x + 2}}{{x - 1}}\) có đồ thị (C) và điểm \(A\left( {a;1} \right).\) Biết \(a = \frac{m}{n}\) (với mọi \(m,n \in N\) và \(\frac{m}{n}\) tối giản) là giá 

Xem lời giải » 3 năm trước 64
Câu 6: Trắc nghiệm

Cho hàm số \(y=f(x)\) liên tục trên R có đồ thị như hình vẽ:

                 

Có bao nhiêu giá trị của n để phương trình \(f\left( {16{{\cos }^2}x + 6\sin 2x - 8} \right) = f\left( {n\left( {n + 1} \right)} \right)\) có nghiệm \(x \in R?\)

Xem lời giải » 3 năm trước 63
Câu 7: Trắc nghiệm

Cho hình chóp tứ giác đều S.ABCD có cạnh đáy bằng 2a, cạnh bên bằng 3a. Tính thể tích của khối chóp đã cho?

Xem lời giải » 3 năm trước 62
Câu 8: Trắc nghiệm

Số tập con của tập \(M = \left\{ {1;2;3} \right\}\) là:

Xem lời giải » 3 năm trước 61
Câu 9: Trắc nghiệm

Cho hàm số \(y=f(x)\) có bảng biến thiên

Số tiệm cận đứng của đồ thị hàm số \(y = \frac{{2018}}{{f(x)}}\) là:

Xem lời giải » 3 năm trước 61
Câu 10: Trắc nghiệm

\(\lim \left( {\frac{1}{{{n^2}}} + \frac{2}{{{n^2}}} + \frac{3}{{{n^2}}} + ... + \frac{n}{{{n^2}}}} \right)\) bằng

Xem lời giải » 3 năm trước 61
Câu 11: Trắc nghiệm

Dãy số \(\left( {{u_n}} \right)_{n = 1}^{ + \infty }\) là cấp số cộng, công sai d. Tổng \({S_{100}} = {u_1} + {u_2} + ... + {u_{100}},{u_1} \ne 0\) là

Xem lời giải » 3 năm trước 60
Câu 12: Trắc nghiệm

Cho hàm số \(y=f(x)\) có đạo hàm \(f'(x) = x{({x^2} + 2x)^3}({x^2} - \sqrt 2 ),\forall x \in R.\) Số điểm cực trị của hàm số là:

Xem lời giải » 3 năm trước 60
Câu 13: Trắc nghiệm

Nếu \(\sin x + \cos x = \frac{1}{2}\) thì \(sin 2x\)bằng

Xem lời giải » 3 năm trước 60
Câu 14: Trắc nghiệm

Có tất cả bao nhiêu giá trị nguyên của tham số m (biết \(m \ge  - 2019\) ) để hệ phương trình sau có nghiệm thực?

\(\left\{ \begin{array}{l}
{x^2} + x - \sqrt[3]{y} = 1 - 2m\\
2{x^3} - {x^2}\sqrt[3]{y} - 2{x^2} + x\sqrt[3]{y} = m
\end{array} \right.\)

Xem lời giải » 3 năm trước 59
Câu 15: Trắc nghiệm

Trên trục tọa độ Oxy, cho hình vuông ABCD. Điểm M thuộc cạnh CD sao cho \(\overrightarrow {MC}  = 2\overrightarrow {DM} ,N(0;2019)\) là trung điểm của cạnh BC, K là giao điểm của hi đường thẳng AMBD. Biết đường thẳng AM có phương trình \(x - 10y + 2018 = 0.\) Khoảng cách từ gốc tọa độ O đến đường thẳng NK bằng:

Xem lời giải » 3 năm trước 59

📝 Đề thi liên quan

Xem thêm »
Xem thêm »

❓ Câu hỏi mới nhất

Xem thêm »
Xem thêm »