Lời giải của giáo viên
ToanVN.com
Ta có: \({\left( {\frac{x}{3} - \frac{3}{x}} \right)^{12}} = {\left( {\frac{1}{3}x - 3{x^{ - 1}}} \right)^{12}} = \sum\limits_{i = 0}^{12} {C_{12}^i{{\left( {\frac{1}{3}x} \right)}^{12 - i}}{{\left( { - 3{x^{ - 1}}} \right)}^i} = \sum\limits_{i = 0}^{12} {C_{12}^i} {{\left( { - 1} \right)}^i}{3^{2i - 12}}{x^{12 - 2i}}} \)
Hệ số của số hạng chứa \(x^4\) trong khai triển ứng với i thỏa mãn \(12 - 2i = 4 \Leftrightarrow i = 4\).
Hệ số đó bằng: \(C_{12}^4{\left( { - 1} \right)^4}{3^{ - 4}} = \frac{{55}}{9}\).
CÂU HỎI CÙNG CHỦ ĐỀ
Cho khối lăng trụ tứ giác đều ABCD. A 'B 'C 'D ' có khoảng cách giữa AB và A’D bằng 2, đường chéo của mặt bên bằng 5. Biết AA' > AD. Thể tích lăng trụ là
Cho khối lăng trụ tam giác đều ABC.A’B’C’ có chiều cao là a và \(AB' \bot BC'\). Thể tích lăng trụ là
Trong không gian Oxyz, cho \(A\left( {1;2; - 1} \right),B\left( {0;1;0} \right),C\left( {3;0;1} \right)\). Diện tích mặt cầu nhận đường tròn ngoại tiếp tam giác ABC làm đường tròn lớn là:
Một vật chuyển động với gia tốc \(a\left( t \right) = 6t\left( {m/{s^2}} \right)\). Vận tốc của vật tại thời điểm t = 2 giây là 17 m / s . Quãng đường vật đó đi được trong khoảng thời gian từ thời điểm t = 4 giây đến thời điểm t = 10 giây là:
Trong không gian Oxyz, cho \(A\left( {1;3;5} \right),B\left( { - 5; - 3; - 1} \right)\). Phương trình mặt cầu đường kính AB là:
Cho hàm số \(y = f\left( x \right)\) có bảng biến thiên như sau:
Mệnh đề nào dưới đây sai?
Biết đồ thị của hàm số \(y = {x^4} - 2m{x^2} + 1\) có ba điểm cực trị \(A\left( {0;1} \right),B,C\). Các giá trị của tham số m để BC = 4 là:
Đồ thị hình bên là của hàm số nào trong các hàm số dưới đây?
.png)
Số đường tiệm cận của đồ thị hàm số \(y = \frac{{x + 2}}{{x - 1}}\) là
Thể tích khối tròn xoay được tạo thành khi quay quanh trục Ox hình phẳng (H) được giới hạn bởi các đường \(y=f(x)\) liên tục trên đoạn [a;b] trục Ox và hai đường thẳng x = a, x = b là:
Một hình hộp chữ nhật có ba kích thước là a, b, c. Gọi (S) là mặt cầu đi qua 8 đỉnh của hình hộp chữ nhật đó. Diện tích của hình cầu (S) theo a, b, c bằng
Cho mặt cầu S(O;R) và mặt phẳng \(\left( \alpha \right)\). Biết khoảng cách từ O tới \(\left( \alpha \right)\) bằng d. Nếu d < R thì giao tuyến của mặt phẳng \(\left( \alpha \right)\) với mặt cầu S(O;R) là đường tròn có bán kính bằng
Số nghiệm của phương trình \({\log _3}\left( { - x} \right) + {\log _3}\left( {x + 3} \right) = {\log _3}5\) là:
Cho \(\int {{{\left( {\frac{x}{{x + 1}}} \right)}^2}dx = mx + n\ln \left| {x + 1} \right| + \frac{p}{{x + 1}} + C} \). Giá trị của biểu thức m + n + p bằng
Cho hình chóp S.ABC có đáy là tam giác ABC vuông cân tại B, \(AB = a,SA = 2a,SA \bot \left( {ABC} \right)\). Bán kính của mặt cầu ngoại tiếp hình chóp S.ABC là:


