Lời giải của giáo viên
ToanVN.com
\(y'=\frac{-4}{{{\left( x-3 \right)}^{2}}}<0\begin{matrix} {} & {} \\ \end{matrix}\forall x\in \left[ 0;2 \right]\)
Hàm số liên tục và đơn điệu trên \(\left[ 0;2 \right]\)
\(\underset{\left[ 0;2 \right]}{\mathop{M\text{ax}y}}\,=y(0)=-\frac{1}{3}\begin{matrix} {} & \underset{\left[ 0;2 \right]}{\mathop{Miny}}\,=y(2)=-3 \\ \end{matrix}\)
CÂU HỎI CÙNG CHỦ ĐỀ
Tiệm cận ngang của đồ thị hàm số \(y=\frac{2x-1}{x+2}\) là đường thẳng
Cho cấp số cộng \(\left(u_{n}\right)\) có \({{u}_{1}}=5\) và \(d=-3\). Giá trị của \({{u}_{6}}\) bằng
Cho hàm số \(f(x)\) có bảng biến thiên như sau:
.png)
Hàm số đã cho nghịch biến trên khoảng nào, trong các khoảng dưới đây?
Tích phân \(\int_{0}^{\frac{\pi }{2}}{\cos x}~\text{d}x\) bằng
Có bao nhiêu số phức \(z\) thỏa mãn \(\left| z-1+5i \right|=\sqrt{13}\) và \)(1+i)z+(2-i)\overline{z}\) là một số thuần ảo?
Có bao nhiêu số nguyên dương \(y\)sao cho ứng với mỗi \(y\) có không quá 8 số nguyên \(x\) thỏa mãn \(\left( {{5.3}^{x}}-4 \right)\left( {{3}^{x}}-y \right)<0?\)
Cho hàm số \(y=f\left( x \right)=a{{x}^{3}}+b{{x}^{2}}+cx+d,\left( a,b,c\in \mathbb{R},a\ne 0 \right)\) có đồ thị \(\left( C \right)\). Biết rằng đồ thị \(\left( C \right)\) tiếp xúc với đường thẳng \(y=9x-18\) tại điểm có hoành độ dương.Tính diện tích \(S\) của hình phẳng giới hạn bởi đồ thị \(\left( C \right)\) và trục hoành.
Trong các hàm số sau, hàm số nào nghịch biến trên \(R\)?
Với \(a\) là số thực dương tùy ý, \(a\sqrt[3]{a}\) bằng
Cho khối chóp \(S.ABC\) có đáy \(ABC\) là tam giác đều cạnh \(\sqrt{3}\) và chiều cao \(h=4\). Thể tích khối chóp \(S.ABC\) bằng
Có bao nhiêu số nguyên dương y sao cho ứng với mỗi y có không quá 10 số nguyên x thỏa mãn \(\left( {{3}^{x+1}}-\sqrt{3} \right)\left( {{3}^{x}}-y \right)<0\)?
Cho số phức \(z=4-2i\). Trong mặt phẳng tọa độ, điểm nào dưới đây biểu diễn số phức \(\overline{z}\)
Cho hàm số \(f(x)={{e}^{5x}}.\) Trong các khằng định sau, khẳng định nào đúng?
Trong một hộp có 100 thẻ được đánh số từ 1 đến 100. Chọn ngẫu nhiên 1 thẻ, xác suất để chữ số ghi trên thẻ được chọn là một số chia hết cho 4 là bao nhiêu?


