Lời giải của giáo viên
ToanVN.com
Đặt \(t={{3}^{x}}>0\) thì ta có bất phương trình \((3t-\sqrt{3})(t-y)<0\) hay \((t-\frac{\sqrt{3}}{3})(t-y)<0\text{ }(*).\)
Vì \(y\in {{\mathbb{Z}}^{+}}\) nên \(y>\frac{\sqrt{3}}{3}\), do đó \((*)\Leftrightarrow \frac{\sqrt{3}}{3}<t<y\Leftrightarrow \frac{\sqrt{3}}{3}<{{3}^{x}}<y\) Do \(y\in {{\mathbb{N}}^{*}}\)
\(\Leftrightarrow -\frac{1}{2}<x<{{\log }_{3}}y.\)
Do mỗi giá trị \(y\in {{\mathbb{N}}^{*}}\) có không quá 10 giá trị nguyên của \(x\in \left( -\frac{1}{2};{{\log }_{3}}y \right)\)
nên \(0\le {{\log }_{3}}y\le 10\) hay \(\Leftrightarrow 1\le y\le {{3}^{10}}=59049\), từ đó có \(y\in \{1,2,\ldots ,59049\}.\)
Vậy có 59049 giá trị nguyên dương của y.
CÂU HỎI CÙNG CHỦ ĐỀ
Tiệm cận ngang của đồ thị hàm số \(y=\frac{2x-1}{x+2}\) là đường thẳng
Cho cấp số cộng \(\left(u_{n}\right)\) có \({{u}_{1}}=5\) và \(d=-3\). Giá trị của \({{u}_{6}}\) bằng
Cho hàm số \(f(x)\) có bảng biến thiên như sau:
.png)
Hàm số đã cho nghịch biến trên khoảng nào, trong các khoảng dưới đây?
Tích phân \(\int_{0}^{\frac{\pi }{2}}{\cos x}~\text{d}x\) bằng
Có bao nhiêu số phức \(z\) thỏa mãn \(\left| z-1+5i \right|=\sqrt{13}\) và \)(1+i)z+(2-i)\overline{z}\) là một số thuần ảo?
Có bao nhiêu số nguyên dương \(y\)sao cho ứng với mỗi \(y\) có không quá 8 số nguyên \(x\) thỏa mãn \(\left( {{5.3}^{x}}-4 \right)\left( {{3}^{x}}-y \right)<0?\)
Gọi \(M,m\) lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số \(y=\frac{x+1}{x-3}\) trên đoạn \(\left[ 0;2 \right]\). Tích \(M.m\) bằng:
Cho hàm số \(y=f\left( x \right)=a{{x}^{3}}+b{{x}^{2}}+cx+d,\left( a,b,c\in \mathbb{R},a\ne 0 \right)\) có đồ thị \(\left( C \right)\). Biết rằng đồ thị \(\left( C \right)\) tiếp xúc với đường thẳng \(y=9x-18\) tại điểm có hoành độ dương.Tính diện tích \(S\) của hình phẳng giới hạn bởi đồ thị \(\left( C \right)\) và trục hoành.
Trong các hàm số sau, hàm số nào nghịch biến trên \(R\)?
Với \(a\) là số thực dương tùy ý, \(a\sqrt[3]{a}\) bằng
Cho khối chóp \(S.ABC\) có đáy \(ABC\) là tam giác đều cạnh \(\sqrt{3}\) và chiều cao \(h=4\). Thể tích khối chóp \(S.ABC\) bằng
Cho số phức \(z=4-2i\). Trong mặt phẳng tọa độ, điểm nào dưới đây biểu diễn số phức \(\overline{z}\)
Cho hàm số \(f(x)=4{{x}^{3}}-3\). Trong các khẳng đinh sau, khằng định nào đúng?
Trong một hộp có 100 thẻ được đánh số từ 1 đến 100. Chọn ngẫu nhiên 1 thẻ, xác suất để chữ số ghi trên thẻ được chọn là một số chia hết cho 4 là bao nhiêu?
Cho hàm số \(f(x)={{e}^{5x}}.\) Trong các khằng định sau, khẳng định nào đúng?


