Lời giải của giáo viên
ToanVN.com
ĐK:\(\left\{ \begin{array}{l} x > 0\\ 6 + x - {x^2} > 0 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} x > 0\\ - 2 \le x \le 3 \end{array} \right.\)
Ta có:
\(\begin{array}{l} 5x + \sqrt {6{x^2} + {x^3} - {x^4}} {\log _2}x > \left( {{x^2} - x} \right){\log _2}x + 5 + 5\sqrt {6 + x - {x^2}} \\ \Leftrightarrow 5x + x\sqrt {6 + x - {x^2}} {\log _2}x > x\left( {x - 1} \right){\log _2}x + 5 + 5\sqrt {6 + x - {x^2}} \\ \Leftrightarrow \left( {x - 1} \right)\left( {5 - x{{\log }_2}x} \right) + \sqrt {6 + x - {x^2}} \left( {x{{\log }_2}x - 5} \right) > 0\\ \Leftrightarrow \left( {5 - x{{\log }_2}x} \right)\left( {x - 1 - \sqrt {6 + x - {x^2}} } \right) > 0 \end{array}\)
\( \Leftrightarrow \left[ \begin{array}{l} \left\{ \begin{array}{l} 5 - x{\log _2}x > 0\\ x - 1 - \sqrt {6 + x - {x^2}} > 0 \end{array} \right.\\ \left\{ \begin{array}{l} 5 - x{\log _2}x < 0\\ x - 1 - \sqrt {6 + x - {x^2}} < 0 \end{array} \right. \end{array} \right.\)
Xét hệ \(\left( I \right)\left\{ \begin{array}{l} 5 - x{\log _2}x > 0{\rm{ }}\left( 1 \right)\\ x - 1 - \sqrt {6 + x - {x^2}} > 0{\rm{ }}\left( 2 \right) \end{array} \right.\)
Giải \(\left( 1 \right)\)
Xét hàm số \(f\left( x \right)=x\left( \frac{5}{x}-{{\log }_{2}}x \right)=xg\left( x \right)\) với \(x\in \left( 0;3 \right].\)
Ta có \(g'\left( x \right)=-\frac{5}{{{x}^{2}}}-\frac{1}{x\ln 2}<0,\forall x\in \left( 0;3 \right].\)
Lập bảng biến thiên:
.png)
Vậy \(f\left( x \right)=x\left( \frac{5}{x}-{{\log }_{2}}x \right)>0,\forall x\in \left( 0;3 \right].\)
Xét bất phương trình \(\left( 2 \right):\)
\(\left( 2 \right)\Leftrightarrow \sqrt{6+x-{{x}^{2}}}<x-1\)
\(\begin{array}{l} \Leftrightarrow \left\{ \begin{array}{l} 6 + x - {x^2} < {\left( {x - 1} \right)^2}\\ x > 1 \end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l} {x^2} - 3x - 5 > 0\\ x > 1 \end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l} \left[ \begin{array}{l} x < - 1\\ x > \frac{5}{2} \end{array} \right.\\ x > 1 \end{array} \right.\\ \Leftrightarrow x > \frac{5}{2}. \end{array}\)
Vậy nghiệm của hệ \(\left( I \right)\) là \(D=\left( \frac{5}{2};3 \right].\)
Hệ \(\left\{ \begin{array}{l} 5 - x{\log _2}x < 0\\ x - 1 - \sqrt {6 + x - {x^2}} < 0 \end{array} \right.\) vô nghiệm
Vậy \(S=\left( \frac{5}{2};3 \right],\) suy ra \(b-a=3-\frac{5}{2}=\frac{1}{2}.\)
CÂU HỎI CÙNG CHỦ ĐỀ
Tính tích phân \(I=\int\limits_{0}^{\frac{\pi }{4}}{\cos \left( \frac{\pi }{2}-x \right)dx}.\)
Cho số phức \(z=7-i\sqrt{5}\). Phần thực và phần ảo của số phức \(\overline{z}\) lần lượt là
Với các số thực dương \(a,b\) bất kì. Mệnh đề nào dưới đây đúng?
Cho hàm số có đồ thị \(y=f\left( x \right)\) như hình vẽ bên dưới. Trên đoạn \(\left[ -3;1 \right]\) hàm số đã cho có mấy điểm cực trị?
.jpg.png)
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh \(a,SA\bot \left( ABCD \right)\) và SA=a. Khoảng cách từ điểm A đến mặt phẳng \(\left( SBD \right)\) bằng
Tìm nguyên hàm của hàm số \(f\left( x \right)=2{{x}^{3}}-9.\)
Tính thể tích \(V\) của khối hộp có chiều cao bằng \(h\) và diện tích đáy bằng \(B.\)
Trong không gian Oxyz, cho \(A\left( 1;-2;1 \right)\) và \(B\left( 0;1;3 \right).\) Phương trình đường thẳng đi qua hai điểm A, B là
Cho hình lăng trụ tam giác đều ABC.A'B'C' có \(AB=2a,AA'=a\sqrt{3}.\) Tính thể tích khối lăng trụ ABC.A'B'C'.
Trong không gian với hệ tọa độ Oxyz, cho ba điểm \(A\left( 1;0;0 \right),B\left( 0;-2;0 \right),C\left( 0;0;3 \right).\) Phương trình nào dưới đây là phương trình của mặt phẳng \(\left( ABC \right)\)?
Cho hàm số \(y=f\left( x \right)\) có đồ thị như hình bên. Khi đó \(y=f\left( x \right)\) là hàm số nào sau đây?
.jpg.png)
Tìm tất cả các giá trị của tham số m để giá trị lớn nhất của hàm số \(y=\left| {{x}^{2}}+2x+m-4 \right|\) trên đoạn \(\left[ -2;1 \right]\) đạt giá trị nhỏ nhất. Giá trị của m là
Cho hai số phức \({{z}_{1}}=2-2i,{{z}_{2}}=-3+3i.\) Khi đó số phức \({{z}_{1}}-{{z}_{2}}\) là
Đường cong hình bên là đồ thị của hàm số \(y=a{{x}^{4}}+b{{x}^{2}}+c\) với a,b,c là các số thực. Mệnh đề nào dưới đây đúng?
.jpg.png)


