Lời giải của giáo viên
ToanVN.com
+ Dựa vào hình dạng đồ thị, ta thấy đây là dạng đồ thị của hàm bậc bốn.
+ Khi \(x\to \pm \infty \), \(y\to -\infty \) suy ra \(a<0\). Nên loại phương án A và phương án B
+ Khi \(x=0\Rightarrow y=0\) nên chọn phương án D
CÂU HỎI CÙNG CHỦ ĐỀ
Cho hàm số \(f\left( x \right)\) có đạo hàm \({f}'\left( x \right)\) liên tục trên \(\mathbb{R}\) và đồ thị của \({f}'\left( x \right)\) trên đoạn \(\left[ -2;6 \right]\) như hình bên dưới. Khẳng định nào dưới đây đúng?
Cho A là tập hợp gồm 20 điểm phân biệt. Số đoạn thẳng có hai điểm đầu mút phân biệt thuộc tập A là:
Cho hai số phức \({{z}_{1}}=1+2i\), \({{z}_{2}}=2-3i\). Xác định phần thực, phần ảo của số phức \(z={{z}_{1}}+{{z}_{2}}\).
Điểm M là biểu diễn của số phức z trong hình vẽ bên dưới. Chọn khẳng định đúng
Trong không gian \(Oxyz\), cho hai điểm \(A\left( 1;\,1;\,-1\, \right)\),\(B\left( 2;\,3;\,2 \right)\). Vectơ \(\overrightarrow{AB}\) có tọa độ là
Khối chóp có đáy là hình vuông cạnh \(a\) và chiều cao bằng \(4a\). Thể tích khối chóp đã cho bằng
Gọi \(M,m\) lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số \(f\left( x \right)={{x}^{3}}-3{{x}^{2}}-9x+35\) trên đoạn \(\left[ -4;4 \right]\) . Tính \(M+2m\).
Hàm số \(f(x)={{x}^{4}}-2\) nghịch biến trên khoảng nào?
Cho số phức \(z\) thỏa mãn \(\left( 1+2i \right)z=\left( 1+2i \right)-\left( -2+i \right)\). Mô đun của \(z\) bằng
Có bao nhiêu số tự nhiên \(x\) không vượt quá \(2018\) thỏa mãn \({{\log }_{2}}\left( \frac{x}{4} \right)\log _{2}^{2}x\ge 0\)?
Đồ thị hàm số \(y=\frac{x+1}{2-x}\) có tiệm cận ngang là đường thẳng:
Tính tổng \(S\) của các phần thực của tất cả các số phức \(z\) thỏa mãn điều kiện \(\bar{z}=\sqrt{3}{{z}^{2}}.\)
Gieo đồng tiền hai lần. Xác suất để sau hai lần gieo thì mặt sấp xuất hiện ít nhất một lần
Tìm tập nghiệm \(S\) của phương trình \({{\log }_{2}}\left( {{x}^{2}}-2 \right)+2=0\).


