Câu hỏi Đáp án 3 năm trước 37

Đề thi trắc nghiệm môn Toán gồm 50 câu hỏi, mỗi câu có 4 phương án trả lời trong đó chỉ có một phương án trả lời đúng. Mỗi câu trả lời đúng được 0,2 điểm. Một học sinh không học bài nên mỗi câu trả lời đều chọn ngẫu nhiên một phương án. Xác suất để học sinh đó được đúng 5 điểm là:

A. \(\frac{{C_{50}^{25}{{\left( {\frac{1}{4}} \right)}^{25}}.{{\left( {\frac{3}{4}} \right)}^{25}}}}{{{4^{50}}}}\)

B. \(C_{50}^{25}{\left( {\frac{1}{4}} \right)^{25}}.{\left( {\frac{3}{4}} \right)^{25}}\)

Đáp án chính xác ✅

C. \({\left( {\frac{1}{4}} \right)^{25}}.{\left( {\frac{3}{4}} \right)^{25}}\)

D. \(\frac{{\frac{{25}}{4}.{{\left( {\frac{3}{4}} \right)}^{25}}}}{{{4^{50}}}}\)

Lời giải của giáo viên

verified ToanVN.com

Học sinh đó làm đúng được 5 điểm khi làm được đúng 25 câu bất kỳ trong số 50 câu, 25 câu còn lại làm sai.

Xác suất để học sinh là đúng một câu bất kỳ là \(\frac{1}{4}\), làm sai một câu là \(\frac{3}{4}\). Do đó xác suất để học sinh đó làm đúng 25 câu bất kỳ trong số 50 câu là \(C_{50}^{25}.{{\left( \frac{1}{4} \right)}^{25}}\).

Xác suất để hoạc sinh đó làm sai 25 câu còn lại là \({{\left( \frac{3}{4} \right)}^{25}}\).

Vậy xác suất để học sinh đó làm được đúng 5 điểm là: \(C_{50}^{25}{{\left( \frac{1}{4} \right)}^{25}}.{{\left( \frac{3}{4} \right)}^{25}}\).

CÂU HỎI CÙNG CHỦ ĐỀ

Câu 1: Trắc nghiệm

Cho hàm số \(y=f\left( x \right)\) xác định, liên tục trên \(\mathbb{R}\) và có bảng biến thên như hình bên. Tìm số nghiệm của phương trình \(3\left| f\left( x \right) \right|-7=0\).

Xem lời giải » 3 năm trước 72
Câu 2: Trắc nghiệm

Trong không gian với hệ trục tọa độ Oxyz, cho điểm \(I\left( 2;-2;0 \right).\) Viết phương trình mặt cầu tâm I bán kính R=4

Xem lời giải » 3 năm trước 72
Câu 3: Trắc nghiệm

Giả sử \(\int\limits_{0}^{9}{f\left( x \right)\text{d}x}=37\) và \(\int\limits_{9}^{0}{g\left( x \right)\text{d}x}=16\). Khi đó, \(I=\int\limits_{0}^{9}{\left[ 2f\left( x \right)+3g(x) \right]\text{d}x}\) bằng:

Xem lời giải » 3 năm trước 71
Câu 4: Trắc nghiệm

Đồ thị hàm số \(y=\frac{2x-3}{x-1}\) có các đường tiệm cận đứng và tiệm cận ngang lần lượt là:

Xem lời giải » 3 năm trước 70
Câu 5: Trắc nghiệm

Tính đạo hàm của hàm số \(y = {\log _5}\left( {{x^2} + 2} \right).\)

Xem lời giải » 3 năm trước 69
Câu 6: Trắc nghiệm

Cho lăng trụ tam giác đều \(ABC.{A}'{B}'{C}'\) có cạnh đáy bằng a và \(A{B}'\bot B{C}'\). Khi đó thể tích của khối lăng trụ trên sẽ là:

Xem lời giải » 3 năm trước 68
Câu 7: Trắc nghiệm

Trong các dãy số sau, dãy số nào là cấp số cộng

Xem lời giải » 3 năm trước 67
Câu 8: Trắc nghiệm

Giải bất phương trình \({{\log }_{2}}\left( 3x-2 \right)>{{\log }_{2}}\left( 6-5x \right)\) được tập nghiệm là \(\left( a;b \right)\) Hãy tính tổng S=a+b

Xem lời giải » 3 năm trước 67
Câu 9: Trắc nghiệm

Cho hàm số \(f\left( x \right)\) liên tục trên \(\mathbb{R}\) và thỏa mãn \(\int\limits_{-5}^{1}{f\left( x \right)dx}=9\). Tính tích phân \(\int\limits_{0}^{2}{\left[ f\left( 1-3x \right)+9 \right]}dx\):

Xem lời giải » 3 năm trước 67
Câu 10: Trắc nghiệm

Tìm n biết \(\frac{1}{{{\log }_{2}}x}+\frac{1}{{{\log }_{{{2}^{2}}}}x}+\frac{1}{{{\log }_{{{2}^{3}}}}x}+...+\frac{1}{{{\log }_{{{2}^{n}}}}x}=\frac{465}{{{\log }_{2}}x}\) luôn đúng với mọi \(x>0,x\ne 1.\)

Xem lời giải » 3 năm trước 67
Câu 11: Trắc nghiệm

Cho số phức z thỏa mãn: \((3+2i)z+{{(2-i)}^{2}}=4+i\). Hiệu phần thực và phần ảo của số phức z là:

Xem lời giải » 3 năm trước 66
Câu 12: Trắc nghiệm

Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng \(\left( P \right):x+y-2z+3=0\) và điểm \(I\left( 1;\,1;\,0 \right)\). Phương trình mặt cầu tâm I và tiếp xúc với \(\left( P \right)\) là:

Xem lời giải » 3 năm trước 66
Câu 13: Trắc nghiệm

Cho số phức z thoả mãn \(\left| z-3+4i \right|=2,\text{w}=2z+1-i.\) Khi đó \(\left| \text{w} \right|\) có giá trị lớn nhất là:

Xem lời giải » 3 năm trước 66
Câu 14: Trắc nghiệm

Cho hàm số \(y={{x}^{3}}-3{{x}^{2}}+6x+5.\) Tiếp tuyến của đồ thị hàm số có hệ số góc nhỏ nhất có phương trình là

Xem lời giải » 3 năm trước 65
Câu 15: Trắc nghiệm

Gọi \({{z}_{1}},{{z}_{2}}\) là hai nghiệm phức của phương trình \(3{{z}^{2}}-z+2=0.\) Tính \({{\left| {{z}_{1}} \right|}^{2}}+{{\left| {{z}_{2}} \right|}^{2}}\)

Xem lời giải » 3 năm trước 64

📝 Đề thi liên quan

Xem thêm »
Xem thêm »

❓ Câu hỏi mới nhất

Xem thêm »
Xem thêm »