Để chuẩn bị cho hội trại do Đoàn trường tổ chức, lớp 12A dự định dựng một cái lều trại có dạng hình parabol như hình vẽ. Nền của lều trại là một hình chữ nhật có kích thước bề ngang 3 mét, chiều dài 6 mét, đỉnh trại cách nền 3 mét. Tính thể tích phần không gian bên trong lều trại.
.png)
A. 72
B. \(72\pi\)
C. 36
D. \(36\pi\)
Lời giải của giáo viên
ToanVN.com
.png)
Gắn hệ trục tọa độ như hình vẽ.
Gọi phương trình parabol là: \(y = a{x^2} + bx + c\), parabol đi qua các điểm
\(\left( {3;0} \right);\,\,\,\left( { - 3;0} \right);\,\,\,\left( {0;3} \right)\) nên ta có hệ phương trình:
\(\left\{ \begin{array}{l}
c = 3\\
9a + 3b + c = 0\\
9a - 3b + c = 0
\end{array} \right. \Rightarrow \left\{ \begin{array}{l}
a = - \frac{1}{3}\\
b = 0\\
c = 3
\end{array} \right. \Rightarrow y = - \frac{1}{3}{x^2} + 3\)
Diện tích hình phẳng giới hạn bởi parabol \(y = - \frac{1}{3}{x^2} + 3\) và trục Ox là: \(S = \int\limits_{ - 3}^3 {\left( { - \frac{1}{3}{x^2} + 3} \right)} dx = 12\)
Vậy thể tích phần không gian bên trong lều trại là V = 12.3 = 36 (m3)
CÂU HỎI CÙNG CHỦ ĐỀ
Trong hình dưới đây, điểm B là trung điểm của đoạn thẳng AC. Khẳng định nào sau đây là đúng?
.png)
Cho hai đường thẳng phân biệt a, b và mặt phẳng (P). Chọn khẳng định đúng?
Tập hợp các số thực m để phương trình \({\log _2}x = m\) có nghiệm thực là
Cho hàm số \(y=f(x)\) liên tục trên đoạn [1;3], thỏa mãn \(f\left( {4 - x} \right) = f\left( x \right),\forall x \in \left[ {1;3} \right]\) và \(\int\limits_1^3 {xf\left( x \right)dx = - 2} \). Giá trị \(2\int\limits_1^3 {f\left( x \right)dx} \) bằng:
Trong không gian tọa độ Oxyz, góc giữa hai vectơ (\overrightarrow i\) và \(\overrightarrow u = \left( { - \sqrt 3 ;0;1} \right)\) là
Trong không gian Oxyz, cho điểm \(A\left( {1;0;0} \right),B\left( {0; - 1;0} \right),C\left( {0;0;1} \right),D\left( {1; - 1;1} \right)\). Mặt cầu tiếp xúc 6 cạnh của tứ diện ABCD cắt (ACD) theo thiết diện có diện tích S. Chọn mệnh đề đúng?
Cho mặt cầu (S) có đường kính 10cm và mặt phẳng (P) cách tâm mặt cầu một khoảng 4cm. Khẳng định nào sau đây là sai?
Cho hàm số \(f\left( x \right) = {3^{x - 4}} + \left( {x + 1} \right){.2^{7 - x}} - 6x + 3\). Giả sử \({m_0} = \frac{a}{b}\) (\(a,b \in Z,\frac{a}{b}\) là phân số tối giản) là giá trị nhỏ nhất của tham số thực m sao cho phương trình \(f\left( {7 - 4\sqrt {6x - 9{x^2}} } \right) + 2m - 1 = 0\) có số nghiệm nhiều nhất. Tính giá trị của biểu thức \(P = a + {b^2}\)
Nguyên hàm của hàm số \(f\left( x \right) = {2^x} + x\) là
Cho hàm số \(y=f(x)\) có đồ thị trên đoạn [- 1;4] như hình vẽ dưới đây. Tính tích phân \(I = \int\limits_{ - 1}^4 {f\left( x \right)dx} \)
.png)
Trong không gian với hệ tọa độ Oxyz, đường thẳng \(\Delta :\left\{ \begin{array}{l}
x = 2 - t\\
y = 1\\
z = - 2 + 3t
\end{array} \right.\) không đi qua điểm nào sau đây?
Cho hình nón đỉnh S có đáy là đường tròn tâm O bán kính R. Trên đường tròn (O) lấy 2 điểm A, B sao cho tam giác OAB vuông. Biết diện tích tam giác SAB bằng \({R^2}\sqrt 2 \), thể tích V của khối nón đã cho bằng
Cho các số thực \(a, b, c, d\) thay đổi luôn thỏa mãn \({\left( {a - 3} \right)^2} + {\left( {b - 6} \right)^2} = 1\) và \(4c + 3d - 5 = 0\). Tính giá trị nhỏ nhất của \(T = {\left( {c - a} \right)^2} + {\left( {d - b} \right)^2}\)
Cho y = F (x) và y = G (x) là những hàm số có đồ thị cho trong hình bên dưới, đặt P (x) = F (x).G (x). Tính P ' (2).
.png)
Đạo hàm của hàm số \(y = \log \left( {1 - x} \right)\) bằng


