Lời giải của giáo viên
ToanVN.com
\(\begin{aligned} &\log _{2} \frac{x+2}{y+1}=4 y^{2}-x^{2}-4 x+8 y+1 \Leftrightarrow \log _{2}(x+2)-\log _{2}(y+1)=4(y+1)^{2}-(x+2)^{2}+1\\ &\Leftrightarrow \log _{2}(x+2)+(x+2)^{2}=\log _{2} 2(y+1)+[2(y+1)]^{2}\,\,\,\,\,\,\,\,(1) \end{aligned}\)
Xét hàm số \(f(t)=\log _{2} t+t^{2} \text { trên } (0 ;+\infty)\)
Ta có: \(f^{\prime}(t)=\frac{1}{t \ln 2}+2 t>0 \,,\forall t \in(0 ;+\infty) \Rightarrow f(t)\) đồng biến trên \((0 ;+\infty)\).
\(\begin{aligned} &(1) \Leftrightarrow f(x+2)=f(2 y+2) \Leftrightarrow x+2=2 y+2 \Leftrightarrow x=2 y\\ &\text { Mà } 0<x \leq 2020 \Rightarrow 0<y \leq 1010 \end{aligned}\)
Vậy có 1010 cặp số nguyên dương ( x;y)
CÂU HỎI CÙNG CHỦ ĐỀ
Cho hình nón (N ) có đường kính đáy bằng 4a , đường sinh bằng 5a . Tính diện tích xung quanh của hình nón (N ).
Trong không gian Oxyz , Cho đường thẳng \(\Delta:\left\{\begin{array}{l} x=2+t \\ y=-1-t \\ z=1 \end{array}\right.\). Véc tơ nào dưới đây là một véc tơ chỉ phương của \(\Delta\)?
Cho hàm số y=f(x) liên tục trên \(\mathbb{R}\) và có bảng biến thiên như hình vẽ:

Có bao nhiêu giá trị nguyên của m để phương trình \(f( \sqrt{1+x}-\sqrt{3-x})=f( \sqrt{|m|+1})\) có nghiệm?
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, \(S A \perp(A B C D) \text { và } S A=a \sqrt{3}\) . Khi đó thể tích của hình chóp S.ABCD bằng:

Với a, b là hai số thực dương khác 1, ta có \(\log _{b^{2}} a\) bằng
Cho hai số thực dương x y ; thỏa mãn \(\log _{3} x+x y=\log _{3}(8-y)+x(8-x)\). Giá trị nhỏ nhất của biểu thức \(P=x^{3}-\left(x^{2}+y^{2}\right)-16 x\) bằng?
Cho hình chóp S. ABCD có đáy ABCD là hình vuông cạnh a , SA vuông góc với mặt phẳng (ABCD) và \(SC=a\sqrt3\) (minh họa như hình bên). Góc giữa mặt phẳng (SBC) và và mặt phẳng (ABCD) bằng

Số tiệm cận của đồ thị hàm số \(y=\frac{2 x-3}{x+1}\)là:
Cho cấp số nhân với \(u_1=3\) và \(u_2 = 9\) . Công bội của cấp số nhân đã cho là:
Trong không gian Oxyz, cho điểm \( M(1 ; 2 ; 3) ; N(-1 ; 1 ; 2)\) Phương trình mặt phẳng trung trực của MN là:
Trong không gian Oxyz cho điểm \(A(-2 ; 0 ; 1) ; B(0 ; 2 ; 3)\) và mặt phẳng \((P): 2 x+y+z-1=0\). Đường thẳng d qua trung điểm I của AB và vuông góc với mặt phẳng (P) có phương trình là:
Xét các số thực a, b thỏa mãn: \(\log _{8}\left(4^{a} . 8^{b}\right)=\log _{4} 16\). Mệnh đề nào dưới đây là đúng?
Giá trị nhỏ nhất của hàm số \(f(x)=x^{4}-6 x^{2}-9\) trên đoạn [-1;4] bằng:
Số giao điểm của đồ thị hàm số \(y=-x^{3}+3 x^{2}-7\) và trục hoành là:
Cho hàm số y=f(x) có bảng biến thiên như hình vẽ. Mệnh đề nào sau đây là sai?



