Có 16 tấm bìa ghi 16 chữ “HỌC”, “ĐỂ”, “BIẾT”, “HỌC”, “ĐỂ”, “LÀM”, “HỌC”, “ĐỂ”, “CHUNG”, “SỐNG”, “HỌC”, “ĐỀ”, “TỰ”, “KHẲNG”, “ĐỊNH”, “MÌNH”. Một người xếp ngẫu nhiên 16 tấm bìa cạnh nhau. Tính xác suất để xếp các tấm bìa được dòng chữ “HỌC ĐỀ BIẾT HỌC ĐỂ LÀM HỌC ĐỂ CHUNG SỐNG HỌC ĐỂ TỰ KHẲNG ĐỊNH MÌNH”.
A. \(\frac{8}{{16!}}\)
B. \(\frac{{4!}}{{16!}}\)
C. \(\frac{1}{{16!}}\)
D. \(\frac{{4!.4!}}{{16!}}\)
Lời giải của giáo viên
ToanVN.com
Sắp xếp ngẫu nhiên 16 tấm bìa \(n\left( \Omega \right)=16!\)
Do có 4 tấm bìa “HỌC” và “ĐỂ” nên số cách sắp xếp theo yêu cầu bài toán là \(n\left( A \right)=4!.4!.\)
Vậy xác suất là \(P\left( A \right)=\frac{4!.4!}{16!}\)
CÂU HỎI CÙNG CHỦ ĐỀ
Tính tích phân \(I=\int\limits_{0}^{\frac{\pi }{4}}{\cos \left( \frac{\pi }{2}-x \right)dx}.\)
Cho số phức \(z=7-i\sqrt{5}\). Phần thực và phần ảo của số phức \(\overline{z}\) lần lượt là
Với các số thực dương \(a,b\) bất kì. Mệnh đề nào dưới đây đúng?
Trong không gian Oxyz, cho \(A\left( 1;-2;1 \right)\) và \(B\left( 0;1;3 \right).\) Phương trình đường thẳng đi qua hai điểm A, B là
Cho hàm số có đồ thị \(y=f\left( x \right)\) như hình vẽ bên dưới. Trên đoạn \(\left[ -3;1 \right]\) hàm số đã cho có mấy điểm cực trị?
.jpg.png)
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh \(a,SA\bot \left( ABCD \right)\) và SA=a. Khoảng cách từ điểm A đến mặt phẳng \(\left( SBD \right)\) bằng
Tìm nguyên hàm của hàm số \(f\left( x \right)=2{{x}^{3}}-9.\)
Tính thể tích \(V\) của khối hộp có chiều cao bằng \(h\) và diện tích đáy bằng \(B.\)
Cho hình lăng trụ tam giác đều ABC.A'B'C' có \(AB=2a,AA'=a\sqrt{3}.\) Tính thể tích khối lăng trụ ABC.A'B'C'.
Trong không gian với hệ tọa độ Oxyz, cho ba điểm \(A\left( 1;0;0 \right),B\left( 0;-2;0 \right),C\left( 0;0;3 \right).\) Phương trình nào dưới đây là phương trình của mặt phẳng \(\left( ABC \right)\)?
Cho hàm số \(y=f\left( x \right)\) có đồ thị như hình bên. Khi đó \(y=f\left( x \right)\) là hàm số nào sau đây?
.jpg.png)
Tìm tất cả các giá trị của tham số m để giá trị lớn nhất của hàm số \(y=\left| {{x}^{2}}+2x+m-4 \right|\) trên đoạn \(\left[ -2;1 \right]\) đạt giá trị nhỏ nhất. Giá trị của m là
Cho hai số phức \({{z}_{1}}=2-2i,{{z}_{2}}=-3+3i.\) Khi đó số phức \({{z}_{1}}-{{z}_{2}}\) là
Biết \(\int\limits_{0}^{1}{\frac{{{x}^{3}}+3x}{{{x}^{2}}+3x+2}dx}=a+b\ln 2+c\ln 3\) với a, b, c là các số hữu tỉ, tính \(S=2a+{{b}^{2}}+{{c}^{2}}.\)


