Lời giải của giáo viên
ToanVN.com
.png)
Các tam giác ABC và ABD đều là tam giác cân có 1 góc bằng 600 (gt) nên \(\Delta ABC;\Delta ABD\) là các tam giác đều.
Lấy N là trung điểm AB. Khi đó \(CN \bot AB;DN \bot AB\) (tính chất tam giác đều)
\( \Rightarrow AB \bot \left( {DCN} \right) \Rightarrow AB \bot DC\)
Nên góc giữa AB và CD là \(90^0\).
CÂU HỎI CÙNG CHỦ ĐỀ
Hàm số nào dưới đây đồng biến trên tập xác định của nó?
Cho hàm số \(f\left( x \right) = a{x^3} + b{x^2} + cx + d\left( {a,b,c,d \in R} \right)\) có đồ thị như hình vẽ. Đồ thị hàm số \(g\left( x \right) = \frac{{\left( {{x^2} + 4x + 3} \right)\sqrt {{x^2} + x} }}{{x\left[ {{{\left( {f\left( x \right)} \right)}^2} - 2f\left( x \right)} \right]}}\) có bao nhiêu đường tiệm cận đứng?
.png)
Cho số phức \(z=10-2i\) . Phần thực và phần ảo của số phức \(\overline z \) là
Cho \(\int\limits_0^1 {f\left( x \right)} dx = 3\) và \(\int\limits_1^2 {f\left( x \right)} dx = 2\) . Khi đó \(\int\limits_0^2 {f\left( x \right)} dx\)
Khi quay một tam giác vuông (kể cả các điểm trong của tam giác vuông đó) quanh đường thẳng chứa một cạnh góc vuông ta được
Cho cấp số cộng \((u_n)\), biết \({u_1} = - 5,d = 2\). Số 81 là số hạng thứ bao nhiêu?
Cho hàm số \(y=f(x)\) có đạo hàm liên tục trên đoạn [- 2;1] thỏa mãn \(f(0=1\) và \({\left( {f\left( x \right)} \right)^2}.f'\left( x \right) = 3{x^2} + 4x + 2.\) Giá trị lớn nhất của hàm số \(y=f(x)\) trên đoạn [- 2;1] là:
Trong không gian Oxyz, xét mặt cầu (S) có phương trình dạng \({x^2} + {y^2} + {z^2} - 4x + y - 2az + 10a = 0\). Tập hợp các giá trị thực của a để (S) có chu vi đường tròn lớn bằng \(8\pi\) là
Gọi \(x_1, x_2\) là hai nghiệm của phương trình \({2^x}{.5^{{x^2} - 2x}} = 1\). Khi đó tổng \(x_1+x_2\) bằng
Có 2 học sinh lớp A, 3 học sinh lớp B và 4 học sinh lớp C xếp thành một hàng ngang sao cho giữa hai học sinh lớp A không có học sinh lớp B. Hỏi có bao nhiêu cách xếp hàng như vậy?
Họ nguyên hàm của hàm số \(f\left( x \right) = {2^{2x}}\) là
Cho hai hàm số \(y = {x^3} + a{x^2} + bx + c\left( {a,b,c \in R} \right)\) có đồ thị (C) và \(y = m{x^2} + nx + p\left( {m,n,p \in R} \right)\) có đồ thị (P) như hình vẽ. Diện tích hình phẳng giới hạn bởi (C) và (P) có giá trị nằm trong khoảng nào sau đây?
.png)
Tính tổng các giá trị nguyên của tham số \(m \in \left[ { - 50;50} \right]\) sao cho bất phương trình \(m{x^4} - 4x + m \ge 0\) nghiệm đúng với mọi \(x \in R\) .
Cho \(x,y > 0\) và thỏa mãn \(\left\{ \begin{array}{l}
{x^2} - xy + 3 = 0\\
2x + 3y - 14 \le 0
\end{array} \right.\). Tính tổng giá trị lớn nhất và nhỏ nhất của biểu thức \(P = 3{x^2}y - x{y^2} - 2{x^3} + 2x\)?
Cho hàm số \(y=f(x)\) có đạo hàm \(f'(x)\) trên tập số thực R và đồ thị của hàm số \(y=f(x)\) như hình vẽ. Khi đó, đồ thị của hàm số \(y = {\left( {f\left( x \right)} \right)^2}\) có
.png)


